Follicle size and oocyte diameter in relation to developmental competence of buffalo oocytes in vitro

2002 ◽  
Vol 14 (1) ◽  
pp. 55 ◽  
Author(s):  
H. M. Raghu ◽  
S. Nandi ◽  
S. M. Reddy

Follicular size, oocyte morphology and diameter were investigated for their possible relationship with in vitro developmental competence of buffalo oocytes. Cumulus oocytes complexes (COCs), aspirated from small (<3 mm), medium (3–8 mm) and large (>8 mm) follicles of normal ovaries and cystic ovarian follicles of abattoir-derived ovaries, were graded for their morphological appearance and were cultured to assess their developmental competence. The influence of cystic follicles on maturational competence of COCs recovered from co-existing follicles of cystic ovaries was studied. The mean diameter of oocytes from follicles of different size were examined, and the influence of oocyte diameter—(i) <126 m; (ii) 127–144 m; (ii) 145–162 m; and (iv) >163 m—on in vitro maturation, cleavage and embryo yield was studied. Results suggested that increased fertilization, cleavage and embryo development were significantly (P<0.05) higher in COCs aspirated from large follicles, followed by medium and small-sized normal follicles, and the presence of cystic follicles had no significant (P<0.05) effect on the maturation competence of the COCs recovered from co-existing follicles. The mean diameter of the buffalo oocyte obtained from normal ovaries was found to be 146.4 m and the rate of blastocyst production in vitro was significantly higher (P<0.05) in oocytes with diameters greater than 145 m. In conclusion, the larger the size of the follicles and oocytes, the greater the developmental competence in vitro of buffalo oocytes.

2010 ◽  
Vol 22 (1) ◽  
pp. 260
Author(s):  
M. Bertoldo ◽  
P. K. Holyoake ◽  
G. Evans ◽  
C. G. Grupen

Effective in vitro maturation (IVM) is essential for successful in vitro embryo production. The morphology of the cumulus investment before and after IVM may be a useful noninvasive indicator of oocyte quality. In pigs, oocyte developmental competence is reduced during the summer months. The aim of this study was to determine whether the morphology of cumulus-oocyte complexes (COC) before and after IVM are associated with oocyte quality, using COC collected from small and large follicles in summer and winter as models of poor and good oocyte quality. Ovaries were collected from sows slaughtered 4 days after weaning. The COC recovered from small (3-4 mm) and large (5-8 mm) antral follicles were morphologically graded and parthenogenetically activated following IVM during winter (n = 1419; 10 replicates) and summer (n = 2803; 10 replicates). Grade 1 and 2 COC had >2 layers of compact cumulus cells and a homogenous cytoplasm. Grade 3 COC were either partially or fully denuded, had a heterogeneous cytoplasm, or were vacuolated or dark in color. Grade 4 COC had expanded cumulus cells. Cumulus expansion was also assessed subsequent to IVM. The COC recorded as having a cumulus expansion index (CEI) of 1 had the poorest expansion with no detectable response to IVM, whereas those with a CEI of 4 had the greatest amount of expansion, including that of the corona radiata. Data were analyzed using a generalized linear mixed model in GenStat® (release 10, VSN International, Hemel Hempstead, UK). There was an effect of follicle size for Grade 1 COC, with COC from large follicles in both seasons yielding better quality COC (P < 0.05). The proportion of COC in Grade 2 was higher in small follicles during winter compared with large follicles, but there were no differences between follicle sizes during summer (P < 0.05). The proportion of COC with CEI 1 was highest in COC from small follicles during summer (P < 0.05). The proportion of COC from large follicles with CEI 2 was higher during summer compared with winter (P < 0.05). There were no seasonal or follicle size effects on COC with CEI 3 or 4 (P > 0.05). The proportion of oocytes that developed to blastocysts was greater in winter than in summer (39.06% ± 5.67 v. 22.27% ± 4.01; P < 0.05). Oocytes derived from large follicles had a greater ability to form blastocysts compared with those from small follicles (37.13% ± 5.65 v. 23.32% ± 4.56; P < 0.06). Morphological assessment of cumulus cells before and after IVM may be a useful tool to evaluate the effects of follicle size on oocyte developmental competence. However, the results of the present study indicate that cumulus cell morphology is not a good indicator of the effect of season on oocyte developmental competence.


2007 ◽  
Vol 19 (7) ◽  
pp. 797 ◽  
Author(s):  
Melanie A. Bagg ◽  
Mark B. Nottle ◽  
David T. Armstrong ◽  
Christopher G. Grupen

The present study compared the distribution and steroid composition of 3-, 4- and 5–8-mm follicles on the surface of prepubertal and adult ovaries, and determined the relationship between follicle size and developmental competence of oocytes following parthenogenetic activation. The effect of 1 mm dibutyryl cAMP (dbcAMP) for the first 22 h of in vitro maturation (IVM) on the embryo development of prepubertal oocytes from the three follicle size cohorts was also determined. Compared with adult, prepubertal ovaries contained a higher proportion of 3-mm follicles (46 v. 72%, respectively), but a lower proportion of 4-mm (33 v. 22%, respectively) and 5–8-mm follicles (21 v. 6%, respectively). Adult follicular fluid (FF) contained 11-fold higher levels of progesterone (P4) than prepubertal FF, with similar levels observed between all adult follicle sizes. In prepubertal FF, the P4 concentration increased with follicle size from 3 to 4 to 5–8 mm. Rates of blastocyst development following parthenogenetic activation of adult oocytes from all three follicles sizes were similar (approximately 55%), whereas rates from prepubertal oocytes increased with increasing follicle size from 3 (17%) to 4 (36%) to 5–8 mm (55%). Treatment with dbcAMP for the first 22 h of IVM led to a 1.5-fold increase in the rate of blastocyst development for prepubertal oocytes from 3-mm follicles, but had no effect on prepubertal oocytes from the 4 and 5–8 mm classes. Mean blastocyst cell number increased with follicle size in prepubertal ovaries and was similar for all follicle sizes in adult ovaries. The present study demonstrates that the low efficiency of in vitro embryo production observed using prepubertal compared with adult pig oocytes is due to a greater proportion of 3-mm follicles on prepubertal ovaries, which contain oocytes of inferior developmental competence.


2009 ◽  
Vol 21 (5) ◽  
pp. 655 ◽  
Author(s):  
Ester Siqueira Caixeta ◽  
Paula Ripamonte ◽  
Maurício Machaim Franco ◽  
José Buratini Junior ◽  
Margot Alves Nunes Dode

To identify the genes related to oocyte competence, we quantified transcripts for candidate genes in oocytes (H1Foo, H2A, H3A, GHR, GDF9, BMP15, OOSP1) and cumulus cells (FSHR, EGFR, GHR, PTX3, IGFII) using the follicle size model to select oocytes of better developmental quality. Follicles were dissected and distributed into four groups according to diameter as follows: 1.0–3.0, 3.1–6.0, 6.1–8.0 and ≥8.1 mm. Cumulus–oocyte complexes (COCs) were released, classified morphologically, matured, fertilised and cultured in vitro or denuded for measurement of diameter and determination of gene expression. Denuded germinal vesicle oocytes and their cumulus cells were used for gene expression analysis by reverse transcription–polymerase chain reaction. The blastocyst rate was highest for oocytes recovered from follicles >6 mm in diameter. In the oocyte, expression of the H2A transcript only increased gradually according to follicle size, being greater (P < 0.05) in oocytes from follicles ≥8.1 mm in diameter than in oocytes from follicles <6.0 mm in diameter. In cumulus cells, expression of FSHR, EGFR and GHR mRNA increased with follicular size. In conclusion, we confirmed the importance of H2A for developmental competence and identified important genes in cumulus cells that may be associated with oocyte competence.


2005 ◽  
Vol 17 (9) ◽  
pp. 102
Author(s):  
M. A. Bagg ◽  
M. B. Nottle ◽  
C. G. Grupen ◽  
D. T. Armstrong

Oocytes utilised for in vitro embryo production (IVP) are typically derived from 3–8 mm ovarian follicles of slaughtered pre-pubertal pigs. Following in vitro maturation (IVM), pre-pubertal oocytes display lower developmental competence (DC) than adult oocytes. The aim of this study was to determine the proportion of follicles 3, 4, and 5–8 mm in diameter on the surface of pre-pubertal and adult ovaries, and assess DC of corresponding oocytes. Oocytes were matured for 46 h in modified medium 199. Mature oocytes from the three follicle size cohorts were activated with calcium ionophore to assess blastocyst embryo formation rate. Data were subjected to arcsine transformation, ANOVA and the Tukey post-hoc test. Compared with adult ovaries, pre-pubertal ovaries contained a higher proportion of 3 mm follicles (46 ± 4 v. 72 ± 4%, P<0.01), but a lower proportion of 4 mm (33 ± 3 v. 22 ± 3%, P<0.01) and 5–8 mm follicles (21 ± 5 v. 6 ± 2%, P<0.01). Adult oocytes from the three follicle sizes displayed similar DC (41±2% to 47±3%). DC of pre-pubertal oocytes improved with increasing follicle size (3 mm < 4 mm < 5–8 mm; 12±4%, 27±8% and 50±8%, respectively; P < 0.05). In conclusion, the predominance of 3 mm follicles accounts for the low DC of oocytes from pre-pubertal donors compared with adult donors. Further research is required to understand DC acquisition in pre-pubertal pig oocytes from the smaller follicles <5mm in diameter.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1794
Author(s):  
Konstantina Stamperna ◽  
Themistoklis Giannoulis ◽  
Eleni Dovolou ◽  
Maria Kalemkeridou ◽  
Ioannis Nanas ◽  
...  

Heat shock protein 70 (HSP70) is a chaperon that stabilizes unfolded or partially folded proteins, preventing inappropriate inter- and intramolecular interactions. Here, we examined the developmental competence of in vitro matured oocytes exposed to heat stress with or without HSP70. Bovine oocytes were matured for 24 h at 39 °C without (group C39) or with HSP70 (group H39) and at 41 °C for the first 6 h, followed by 16 h at 39 °C with (group H41) or without HSP70 (group C41). After insemination, zygotes were cultured for 9 days at 39 °C. Cleavage and embryo yield were assessed 48 h post insemination and on days 7, 8, 9, respectively. Gene expression was assessed by RT-PCR in oocytes, cumulus cells and blastocysts. In C41, blastocysts formation rate was lower than in C39 and on day 9 it was lower than in H41. In oocytes, HSP70 enhanced the expression of three HSP genes regardless of incubation temperature. HSP70 at 39 °C led to tight coordination of gene expression in oocytes and blastocysts, but not in cumulus cells. Our results imply that HSP70, by preventing apoptosis, supporting signal transduction, and increasing antioxidant protection of the embryo, protects heat stressed maturing bovine oocyte and restores its developmental competence.


2021 ◽  
Vol 10 (13) ◽  
pp. 2757
Author(s):  
Xia Hao ◽  
Amandine Anastácio ◽  
Kenny A. Rodriguez-Wallberg

Fertility preservation through ovarian stimulation, aiming at cryopreserving mature oocytes or embryos, is sometimes unsuccessful. This clinical situation deserves novel approaches to overcome infertility following cancer treatment in patients facing highly gonadotoxic treatment. In this controlled experimental study, we investigated the feasibility of in-vitro culturing secondary follicles isolated from superovulated ovaries of mice recently treated with gonadotropins. The follicle yields of superovulated ovaries were 45.9% less than in unstimulated controls. Follicles from superovulated ovaries showed faster growth pace during the initial 7 days of culture and secreted more 17β-estradiol by the end of culture vs controls. Parameters reflecting the outcome of follicular development and oocyte maturation competence in vitro were similar between superovulated and control groups, with a similar follicle size at the end of culture and around 70% survival. Nearly half of cultured follicles met the criteria for in-vitro maturation in both groups and approximately 60% of those achieved a mature MII oocyte, similarly in both groups. Over 60% of obtained MII oocytes displayed normal-looking spindle and chromosome configurations, without significant differences between the groups. Using a validated follicle culture system, we demonstrated the feasibility of secondary follicle isolation, in-vitro culture and oocyte maturation with normal spindle and chromosome configurations obtained from superovulated mice ovaries.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1034
Author(s):  
Joohyeong Lee ◽  
Eunhye Kim ◽  
Seon-Ung Hwang ◽  
Lian Cai ◽  
Mirae Kim ◽  
...  

This study aimed to examine the effects of treatment with glucuronic acid (GA) and N-acetyl-D-glucosamine (AG), which are components of hyaluronic acid (HA), during porcine oocyte in vitro maturation (IVM). We measured the diameter of the oocyte, the thickness of the perivitelline space (PVS), the reactive oxygen species (ROS) level, and the expression of cumulus cell expansion and ROS-related genes and examined the cortical granule (CG) reaction of oocytes. The addition of 0.05 mM GA and 0.05 mM AG during the first 22 h of oocyte IVM significantly increased oocyte diameter and PVS size compared with the control (non-treatment). The addition of GA and AG reduced the intra-oocyte ROS content and improved the CG of the oocyte. GA and AG treatment increased the expression of CD44 and CX43 in cumulus cells and PRDX1 and TXN2 in oocytes. In both the chemically defined and the complex medium (Medium-199 + porcine follicular fluid), oocytes derived from the GA and AG treatments presented significantly higher blastocyst rates than the control after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT). In conclusion, the addition of GA and AG during IVM in pig oocytes has beneficial effects on oocyte IVM and early embryonic development after PA and SCNT.


1997 ◽  
Vol 57 (2) ◽  
pp. 232-245 ◽  
Author(s):  
Ghylène Goudet ◽  
Jacqueline Bézard ◽  
Guy Duchamp ◽  
Nadine Gérard ◽  
Eric Palmer

2016 ◽  
Vol 95 (4) ◽  
pp. 76-76 ◽  
Author(s):  
A. Okamoto ◽  
M. Ikeda ◽  
A. Kaneko ◽  
C. Kishida ◽  
M. Shimada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document