Quantitative analysis of the intensity of zona pellucida birefringence of oocytes during IVF cycles

2010 ◽  
Vol 22 (8) ◽  
pp. 1167 ◽  
Author(s):  
Junping Cheng ◽  
Li Huang ◽  
Bing He ◽  
Fenghua Lu ◽  
Xiaoli Wang ◽  
...  

To determine whether the age of the female patient, oocyte maturation stage, pronuclei, embryonic quality and/or cycle outcome are related to the intensity of the zona pellucida birefringence (ZPB) in oocytes during IVF procedures, a retrospective study was conducted on 214 IVF cycles using a polarisation imaging system. A negative correlation was found between ZPB intensity and the age of female patients (r = –0.44; P < 0.0001). For oocytes at different maturation stages, the ZPB score was higher at the germinal vesicle stage (20.77 ± 1.88) than at MI (10.99 ± 1.35; P < 0.001), and higher at MI than at MII (7.91 ± 0.65; P < 0.05). For the pronuclei (PN) of fertilised oocytes, the ZPB score of oocytes with 3PN was significantly higher than that of oocytes with 1PN or 0PN (7.94 ± 0.78 v. 5.57 ± 1.51 and 4.45 ± 0.85, respectively; P < 0.001). However, there were no differences in ZPB scores between oocytes with 2PN and 3PN. Neither embryo quality on Day 3 nor the clinical results could be predicted on the basis of the ZPB score (P > 0.05).

2021 ◽  
Vol 15 ◽  
pp. 174830262110080
Author(s):  
Changjun Zha* ◽  
Qian Zhang* ◽  
Huimin Duan

Traditional single-pixel imaging systems are aimed mainly at relatively static or slowly changing targets. When there is relative motion between the imaging system and the target, sizable deviations between the measurement values and the real values can occur and result in poor image quality of the reconstructed target. To solve this problem, a novel dynamic compressive imaging system is proposed. In this system, a single-column digital micro-mirror device is used to modulate the target image, and the compressive measurement values are obtained for each column of the image. Based on analysis of the measurement values, a new recovery model of dynamic compressive imaging is given. Differing from traditional reconstruction results, the measurement values of any column of vectors in the target image can be used to reconstruct the vectors of two adjacent columns at the same time. Contingent upon characteristics of the results, a method of image quality enhancement based on an overlapping average algorithm is proposed. Simulation experiments and analysis show that the proposed dynamic compressive imaging can effectively reconstruct the target image; and that when the moving speed of the system changes within a certain range, the system reconstructs a better original image. The system overcomes the impact of dynamically changing speeds, and affords significantly better performance than traditional compressive imaging.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 647
Author(s):  
Sameer Alani ◽  
Zahriladha Zakaria ◽  
Tale Saeidi ◽  
Asmala Ahmad ◽  
Muhammad Ali Imran ◽  
...  

Skin cancer is one of the most widespread and fast growing of all kinds of cancer since it affects the human body easily due to exposure to the Sun’s rays. Microwave imaging has shown better outcomes with higher resolution, faster processing time, mobility, and less cutter and artifact effects. A miniaturized elliptical ultra-wideband (UWB) antenna and its semi-spherical array arrangement were used for signal transmission and reception from the defected locations in the breast skin. Several conditions such as various arrays of three, six, and nine antenna elements, smaller tumor, multi-tumors, and skin on a larger breast sample of 30 cm were considered. To assess the ability of the system, a breast shape container with a diameter of 130 mm and height of 60 mm was 3D printed and then filled with fabricated skin and breast fat to perform the experimental investigation. An improved modified time-reversal algorithm (IMTR) was used to recreate 2D images of tumors with the smallest radius of 1.75 mm in any location within the breast skin. The reconstructed images using both simulated and experimental data verified that the system can be a reliable imaging system for skin cancer diagnosis having a high structural similarity index and resolution.


2021 ◽  
Author(s):  
Hiroshi Ohno ◽  
Takahiro Kamikawa

AbstractThe bidirectional reflectance distribution function (BRDF) that describes an angle-resolved distribution of surface reflectance is available for characterizing surface properties of a material. A one-shot BRDF imaging system can capture an in-plane color mapping of light direction extracted from a surface BRDF distribution. A surface roughness identification method is then proposed here using the imaging system. A difference between surface properties of a matt paper and a glossy paper is experimentally shown to be detected using the method. A surface reconstruction method of an axisymmetric micro-object using the imaging system is also proposed here. The imaging system experimentally shows that it can reconstruct an axisymmetric aluminium cone surface with a height of 37 μm.


2017 ◽  
Vol 39 (4) ◽  
pp. 374-384
Author(s):  
Cesar Pedro Hartmann Filho ◽  
André Luís Duarte Goneli ◽  
Tathiana Elisa Masetto ◽  
Elton Aparecido Siqueira Martins ◽  
Guilherme Cardoso Oba

Abstract: This study evaluated the physiological potential of soybean seeds harvested during two seasons, on different maturation stages and subjected to different drying temperatures. The seeds were harvested at the maturations stages R7, R7 + 2, R7 + 3, R7 + 5, R7 + 6, R7 + 7, R7 + 10 and R7 + 12 days (55, 50, 45, 40, 35, 30, 25, and 20% of moisture content). For each maturation stage, seeds were divided into three samples: one sample was used to directly evaluate the physiological potential, and the others were dried at 40 °C and 50 °C, until reaching the moisture content of 11.5%. The physiological potential was evaluated through germination test, first germination count of germination, accelerated aging, modified cold, electrical conductivity and seedling emergence. The maximum physiological potential of seeds is achieved at the moisture content of 55%, the point that the dry matter is maximum. The seeds became tolerant to artificial drying approximately at the stage R7 + 7 days (30% of moisture content). Germination and vigor of the soybean seeds reduce as the drying temperature is increased from 40 °C to 50 °C, and this effect is enhanced when the seeds show moisture contents above 30%.


Sign in / Sign up

Export Citation Format

Share Document