Intracellular calcium in cultured rabbit oviduct epithelial cells

1996 ◽  
Vol 8 (2) ◽  
pp. 243 ◽  
Author(s):  
CJ Dickens ◽  
CI Cox ◽  
HJ Leese

Oviduct fluid is the medium in which fertilization and early embryonic development occur but little is known about the ionic basis of fluid secretion or its control. Since calcium ions (Ca2+) are involved in the mechanism of secretion in other epithelia, the intracellular calcium concentration ([Ca2+]i) was measured in single, rabbit oviduct epithelial cells in primary culture using the fluorescent dye Fura-2. The resting [Ca2+]i was constant (115 nM) in cells cultured for 2-7 days. Ion substitution experiments demonstrated the presence of a Na+/Ca(2+)-exchange system in the plasma membrane, whereas influx through channels was found to have only a minor role maintaining the resting [Ca2+]i. The addition of dibutyryl cAMP (db cAMP) induced two types of response: the first was an increase in [Ca2+]i, dependent on the presence of extracellular Ca2+, and the second was a zero response. Extracellular ATP induced a transient increase in [Ca2+]i owing to the release of Ca2+ from intracellular stores and Ca2+ entering the cell across the plasma membrane. It is proposed that these effects may be due to the presence of two types of cell in culture-the ciliated and non-ciliated (secretory type) oviduct epithelial cells.

Reproduction ◽  
2014 ◽  
Vol 147 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Mohamed A Marey ◽  
Jinghui Liu ◽  
Rasoul Kowsar ◽  
Shingo Haneda ◽  
Motozumi Matsui ◽  
...  

This study aimed to investigate the presence of polymorphonuclear neutrophils (PMNs) in bovine oviduct fluid under physiological conditions and to determine the possible role of bovine oviduct epithelial cells (BOECs) in the regulation of the phagocytic activity of PMNs for sperm. During the pre-ovulatory stage, PMNs were identified in the bovine oviduct fluid in relatively constant numbers. In our experiments, PMNs were incubated for 4 h with the supernatant of cultured BOECs stimulated for 24 h by LH (10 ng/ml). Phagocytosis was then assayed by co-incubation of these PMNs with sperm treated to induce capacitation. The BOEC supernatant significantly suppressed sperm phagocytosis by PMNs, and the LH-stimulated BOEC supernatant further suppressed phagocytosis. Importantly, in the BOEC culture, LH stimulated the secretion of prostaglandin E2(PGE2), which dose-dependently (10−6, 10−7, and 10−8 M) suppressed sperm phagocytosis by PMNs. Furthermore, a PGEP2receptor antagonist significantly abrogated the inhibition of phagocytosis by the LH-stimulated BOEC supernatant. Additionally, using scanning electron microscopy, incubation of PMNs with either PGE2or LH-stimulated BOEC supernatant before phagocytosis was found to prevent the formation of DNA-based neutrophil extracellular traps for sperm entanglement. The results indicate that sperm are exposed to PMNs in the oviduct and PGE2released into the oviduct fluid after LH stimulation may play a major role in the suppression of the phagocytic activity of PMNs for sperm via interaction with EP2receptors. Thus, the bovine oviduct provides a PGE2-rich microenvironment to protect sperm from phagocytosis by PMNs, thereby supporting sperm survival in the oviduct.Free Japanese abstractA Japanese translation of this abstract is freely available athttp://www.reproduction-online.org/content/147/2/211/suppl/DC1


2008 ◽  
Vol 20 (1) ◽  
pp. 175
Author(s):  
S. L. Whitear ◽  
H. J. Leese

Oviduct fluid provides the environment for the gametes and early embryo but little is known about the mechanisms underlying its formation. Components of oviduct fluid have been shown to be present at concentrations different from that in blood, indicative of selective transport by the epithelial cells lining the lumen. For example, amino acid concentrations in oviduct fluid differ from those in extracellular fluid and have also been shown to be important to preimplantation embryos in vitro, enhancing development, especially when added at physiological concentrations. However, little is known about amino acid transport systems in the oviduct, and the aim of this work was to search for mRNA transcripts for amino acid transporters in bovine oviduct epithelial cells. Contra- and ipsi-lateral oviducts were removed from abattoir-derived reproductive tracts at specific stages of the reproductive cycle. Oviducts were trimmed of surrounding tissue and fat and slit longitudinally to expose the luminal surface. Bovine oviduct epithelial cells (bOEC) were scraped from the surface using a sterile glass coverslip and washed by centrifugation. mRNA was isolated using Trizol-chloroform extraction and lithium chloride precipitation methods. PCR was used to detect cDNA encoding the amino acid transporters CAT-1, CAT-4, and LAT1. A negative control (water) and a positive control (human placental cDNA) were included in each experiment and β-actin expression was used as a positive control for cDNA library generation. Products were separated by agarose gel electrophoresis. PCR for β-actin resulted in the presence of a positive band in all samples, showing successful extraction of mRNA and generation of cDNA libraries. mRNA for CAT-1 and LAT1 was detected in bOEC from contra- and ipsi-lateral oviducts and from each cycle stage tested. There was, however, no detectable mRNA for CAT-4 in any of the samples. To our knowledge, this is the first report of amino acid transporter expression in the mammalian oviduct. CAT-1 is a ubiquitous sodium-independent uniporter of cationic amino acids that has been localized to the basolateral membrane of epithelial cells. The presence of mRNA for this amino acid transporter in all samples tested is therefore to be expected. LAT1 is a obligatory exchanger which exports glutamine and cystine and imports large uncharged branched-chain amino acids. This transporter may be partly responsible for the high concentration of glutamate in the basal compartment of in vitro cell cultures reported in our previous work (Whitear and Leese 2007 Biennial Meet. Joint Fertil. Soc., York, UK). CAT-4 shares only 40% sequence homology with CAT-1 and its function is unknown. Its expression appears to be restricted to brain, testis, and placenta, and the absence of mRNA for the oviduct was, perhaps, not surprising. Further experiments will investigate expression levels of other amino acid transporters in bOEC and transporter localization using immunohistochemistry. This work was funded by the BBSRC and ANGLE Technology Ltd.


2007 ◽  
Vol 35 (5) ◽  
pp. 927-930 ◽  
Author(s):  
D. Oceandy ◽  
P.J. Stanley ◽  
E.J. Cartwright ◽  
L. Neyses

The PMCA (plasma-membrane Ca2+-ATPase) is a ubiquitously expressed calcium-extruding enzymatic pump important in the control of intracellular calcium concentration. Unlike in non-excitable cells, where PMCA is the only system for calcium extrusion, in excitable cells, such as cardiomyocytes, PMCA has been shown to play only a minor role in calcium homoeostasis compared with the NCX (sodium/calcium exchanger), another system of calcium extrusion. However, increasing evidence points to an important role for PMCA in signal transduction; of particular interest in cardiac physiology is the modulation of nNOS (neuronal nitric oxide synthase) by isoform 4b of PMCA. In the present paper, we will discuss recent advances that support a key role for PMCA4 in modulating the nitric oxide signalling pathway in the heart.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shayne E. Quinn ◽  
Lu Huang ◽  
Jason G. Kerkvliet ◽  
Joel A. Swanson ◽  
Steve Smith ◽  
...  

AbstractMacropinosomes are formed by shaping actin-rich plasma membrane ruffles into large intracellular organelles in a phosphatidylinositol 3-kinase (PI3K)-coordinated manner. Here, we utilize lattice lightsheet microscopy and image visualization methods to map the three-dimensional structure and dynamics of macropinosome formation relative to PI3K activity. We show that multiple ruffling morphologies produce macropinosomes and that the majority form through collisions of adjacent PI3K-rich ruffles. By combining multiple volumetric representations of the plasma membrane structure and PI3K products, we show that PI3K activity begins early throughout the entire ruffle volume and continues to increase until peak activity concentrates at the base of the ruffle after the macropinosome closes. Additionally, areas of the plasma membrane rich in ruffling had increased PI3K activity and produced many macropinosomes of various sizes. Pharmacologic inhibition of PI3K activity had little effect on the rate and morphology of membrane ruffling, demonstrating that early production of 3′-phosphoinositides within ruffles plays a minor role in regulating their morphology. However, 3′-phosphoinositides are critical for the fusogenic activity that seals ruffles into macropinosomes. Taken together, these data indicate that local PI3K activity is amplified in ruffles and serves as a priming mechanism for closure and sealing of ruffles into macropinosomes.


2002 ◽  
Vol 87 (04) ◽  
pp. 699-705 ◽  
Author(s):  
Elizabeth Milner ◽  
Qi Zheng ◽  
John Kermode

SummaryInteraction of von Willebrand factor (VWF) with the platelet promotes hemostasis upon vascular injury. Such interaction raises intracellular free calcium concentration ([Ca2+]i) and induces platelet activation. The platelet [Ca2+]i increase is generally attributed to influx across the plasma membrane. The present study defined the contribution of intracellular calcium stores. Platelet [Ca2+]i was monitored with Fura-PE3. Ristocetin-mediated binding of VWF transiently elevated [Ca2+]i after a lag phase. Studies with 63 healthy donors consistently revealed a VWF-induced platelet [Ca2+]i signal in the absence of extracellular calcium; there was only modest enhancement with extracellular calcium. Blockade of plasma membrane calcium channels did not diminish the signal, whereas depletion or blockade of the intracellular calcium stores abolished it. These findings imply that release from intracellular stores is responsible for the VWF-induced platelet [Ca2+]i increase. Influx across the plasma membrane plays no more than a minor role, probably representing “capacitative entry” to refill the intracellular stores.


2005 ◽  
Vol 18 (12) ◽  
pp. 1258-1268 ◽  
Author(s):  
Daigo Takemoto ◽  
David A. Jones

The Arabidopsis RIN4 protein mediates interaction between the Pseudomonas syringae type III effector proteins AvrB, AvrRpm1, and AvrRpt2 and the Arabidopsis disease-resistance proteins RPM1 and RPS2. Confocal laser-scanning fluorescence microscopy following particle bombardment of tobacco leaf epidermal cells was used to examine the subcellular localization of fusions between GFP and RIN4 or several of its homologs and to examine the effects of co-bombardment with AvrRpt2 or AvrRpm1. This study showed that RIN4 was attached to the plasma membrane at its carboxyl terminus and that a carboxyl-terminal CCCFxFxxx prenylation or acylation (typically palmitoylation) motif, or both, was essential for this attachment. RIN4 was cleaved by AvrRpt2 at two PxFGxW motifs, one releasing a large portion of RIN4 from the plasma membrane and both exposing amino-terminal residues that destabilized the carboxyl-terminal cleavage products by targeting them for N-end ubiquitylation and proteasomal degradation. Plasma-membrane localization of RIN4 was not affected by AvrRpm1. RIN4 was found to be part of a protein family comprising two full-length homologs and at least 11 short carboxyl-terminal homologs. Representatives of this family, comprising a full-length RIN4 homolog and two short carboxyl-terminal RIN4 homologs, were also attached to the plasma membrane and cleaved near their amino termini by AvrRpt2, but in contrast to RIN4, the major portions of these proteins remained on the plasma membrane. N-end degradation may play a minor role in RIN4 degradation but probably plays a major role in the degradation of RIN4 homologs and is, therefore, a major pathogenic consequence of AvrRpt2 cleavage.


Sign in / Sign up

Export Citation Format

Share Document