173 THE EFFECT OF AMINO ACIDS AND HYALURONAN ON BOVINE EMBRYO IN VITRO DEVELOPMENT AND GENE EXPRESSION PATTERN

2006 ◽  
Vol 18 (2) ◽  
pp. 194 ◽  
Author(s):  
A. T. Palasz ◽  
J. Beltrán Breña ◽  
P. De la Fuente ◽  
M. F. Martinez ◽  
A. Gutiérrez-Adán

We have previously shown that bovine embryos cultured in SOFaa (BME + MEM amino acids) culture medium with hyaluronan (HA) + BSA are of better quality (Guti�rrez-Ad�n et al. 2005 Reprod. Fertil. Dev. 17, 219). Our objective was to examine the effect of essential (BME) or non-essential (MEM) amino acids with or without HA (MAP-5; Bioniche, Inc., Belleville, Ontario, Canada) on bovine embryo in vitro development and mRNA transcription of five developmentally important genes; apoptosis (Bax), growth factor (IGF-II), glucose (Glut-1) and fructose (Glut-5) transport and metabolism, and cell to cell adhesion (Cx-43). A total of 1474 presumptive zygotes (5 replicates) were initially cultured in 40 �L drops in the following groups: Group 1, control, SOFaa; Group 2, SOF-1 (MEM only); and Group 3, SOF-2 (BME only). On Day 4 (~96 h post-insemination (pi) the number of zygotes that had developed to d8 cells was recorded and 10 �L of SOF-1 and SOF-2, each with 2.5 mg/mL HA, was added to half of the embryos from Groups 2 and 3, respectively; the other half of Groups 2 and 3 and control group received 10 �L of corresponding medium without HA. Embryos were cultured under paraffin oil at 39�C and 5% CO2 in humidified air. Cleavage rates were recorded on Day 2 and the number of blastocysts on Days 7, 8, and 9. Five blastocysts from each replicate from each treatment were frozen for determination of gene expression patterns later. Cleavage rates and embryo development 96 h pi were compared among groups by chi-square analysis. The effects of HA and medium on blastocyst rates were analyzed by logistic regression and the data on mRNA expression by one-way repeated-measures ANOVA. Cleavage rates were 81.1% in SOFaa and 79.3% in SOF-1 (P = 0.48) and different from those in the SOF-2 group (72.4%; P < 0.02). The proportion of embryos that developed to d8 cells at Day 4 was higher in the control (46.7%) and SOF-1 (46.8%) groups than in the SOF-2 group (32.6%). The number of blastocysts that developed in SOFaa (37.0%), SOF-1 (37.7%), and SOF-1 + HA (37.8%) were higher (P < 0.001) than those in SOF-2 (19.6%) and SOF-2 + HA (21.8%). The level of expression of Glut-5 was not different among the groups. However, SOF-2 was the only group that had significantly lower expression of Glut-5, Igf II, and Cx43, and higher expression of BAX (P < 0.05) as compared to the control group and the SOF-1 groups with or without HA. Addition of HA to SOF-2 medium increased expression of Glut-1 and Igf II and decreased expression of BAX as compared to the SOF-1 only and control groups and the SOF-2 groups with or without HA (P < 0.05). The level of expression of Cx43 was higher in the control than in four remaining groups, and lower in the SOF-2 than in the SOF-1 group (P < 0.05). Addition of HA increased expression of Cx43 in both SOF-1 and SOF-2 groups but this level of expression was lower than in the control group; the level in the SOF-2 + HA group was lower (P < 0.05) than in the SOF-1 + HA group. We conclude that, within our protocol, MEM amino acids only stimulate embryo development to the blastocyst stage and the addition of HA to the SOF-MEM and SOF-BME media on Day 4 of culture improved embryo quality.

2005 ◽  
Vol 17 (2) ◽  
pp. 219 ◽  
Author(s):  
C.E. Ferguson ◽  
T.R. Davidson ◽  
M.R.B. Mello ◽  
A.S. Lima ◽  
D.J. Kesler ◽  
...  

There has been much debate over a direct role for progesterone (P4) in early bovine embryo development. While previous attempts to supplement bovine embryos in vitro with P4 produced results that vary and are often contradictory, this may be a response of administering P4 at inappropriate times. Therefore, the objective of these experiments was to determine if P4 could exert a direct effect on developing IVF-derived bovine embryos when administered at an appropriate time of embryo development. In Exp. I, IVF-derived bovine 8-cell embryos were randomly allotted to treatments: (1) control, CR1aa medium (n = 168); (2) vehicle, CR1aa + ETOH (0.01%) (n = 170); and (3) P4, CR1aa + ETOH + P4 (20 ng/mL in 50-μL droplet) (n = 173). In Exp. II, IVF-derived bovine 8-cell embryos were randomly allotted to treatments: (1) control, CR1aa medium (n = 160); (2) vehicle, CR1aa + DMSO (0.01%) (n = 180); and (3) P4, CR1aa + DMSO (0.01%) + P4 (20 ng/mL in 50-μL droplet) (n = 170). All embryos were evaluated on Days 6 to 9 post-insemination and rates calculated from 8-cell embryos. In Exp. I, ETOH tended to have a detrimental effect with significantly fewer (P < 0.05) embryos (53%) developing to the blastocyst stage on Day 7 compared with the control (62%) and P4 (71%) groups. At Day 7, significantly more embryos cultured in P4 (71%) developed to the blastocyst stage compared with the control group (62%). P4 treatment significantly increased the number of Grade 1 blastocysts (25%) on Day 7 compared with vehicle (15%) and control (17%) groups. At the end of culture, there were also significantly more Day 9 hatched blastocysts in the P4 group (33%) compared with vehicle (22%) and control (21%) groups. Supplementing P4 in the culture medium increased the rate of development, resulting in significantly more blastocysts (8%) on Day 6 and hatched blastocysts (21%) on Day 8 compared with vehicle (3% and 12%) and control (0% and 8%) groups, respectively. In Exp. II, there were no significant differences between treatment groups for Day 7 blastocysts (control 54%, DMSO 61%, P4 57%) and Day 9 hatched blastocysts (control 46%, DMSO 51%, P4 46%). However, there were significantly more Grade 1 blastocysts in the P4 group (22% and 36%) on Days 6 and 8 compared with vehicle (11% and 23%) and control (13% and 23%) groups, respectively. The lack of improvement in Day 7 blastocysts and Day 9 hatched blastocysts rates leads to further uncertainty in understanding the P4 vehicle interactions. In conclusion, the results of these two experiments indicate that P4 can exert a direct effect on the developing IVF-derived bovine embryo; however, due to P4 vehicle interactions; other inert vehicles need to be explored to further evaluate the direct effects of P4 on the developing bovine embryo.


2007 ◽  
Vol 19 (1) ◽  
pp. 203
Author(s):  
S. R. Cho ◽  
S. H. Choi ◽  
H. J. Kim ◽  
C. Y. Choe ◽  
H. J. Jin ◽  
...  

The present study was carried out to investigate the effect of different ovary transport temperatures on in vitro development and post-thaw survivability of bovine embryos. Bovine ovaries were collected at a local slaughterhouse and transported at 4 different temperature categories to the laboratory: 7–10�C (T1), 11–17�C (T2), 18–25�C (T3), and above 26�C (control group). The cumulus–oocyte complexes (COCs) were aspirated from 2–8 mm antral follicles using a syringe with an 18 gauge needle. Selected COCs were washed in HEPES-buffered tissue culture medium (TCM-199) supplemented with 5% FBS. Sets of 50 COCs were matured for 22 h in 4-well dishes of TCM-199 supplemented with 5% FBS, 10 �g mL-1 LH, and 10 �g mL-1 FSH, that had been previously covered with mineral oil and equilibrated in an atmosphere of 5% CO2 in air at 39�C. Mature COCs were fertilized with frozen–thawed semen treated with BO medium. To evaluate nuclear maturation to the metaphase II stage, the matured COCs were fixed in 1 : 3 acetic acid–ethanol for 30 s and stained with 3% basic Fuchsin. For embryo freezing, Day 7 and 8 blastocysts were equilibrated for 15 min in 1.8 M ethylene glycol as a cryoprotectant. Embryos were loaded into 0.25-mL straws at room temperature, plunged directly into a cooling chamber, kept at -7�C for 10 min, including time for seeding, and further cooled to -35�C at -0.3�C min-1; after 2 min at this temperature, they were plunged into liquid nitrogen. Thawing was performed by keeping straws at room temperature for 10 s, followed by immersion in a water bath at 37�C. The appearance of the embryos was evaluated immediately after warming and again at 24-h intervals for at least 3 days. The development rate was assessed by the re-expansion of the blastocoel and the hatching of blastocysts. Results were compared by ANOVA. The rates of maturation (to metaphase II), cleavage, and development to blastocysts were compared among treatment groups. Furthermore, frozen–thawed blastocysts were in vitro cultured to compare the survivability among groups. The maturation rates in the T1, T2, and T3 groups (24/40, 60.0%; 25/41, 61.0%; and 30/44, 68.2%, respectively) were significantly lower than that in the control group (36/44, 81.8%; P &lt; 0.05). The cleavage rates in the T1 and T2 groups (61/116, 52.6% and 66/121, 54.5%) were significantly lower than that in the control group (112/134, 83.6%; P &lt; 0.05). However, there was no difference in the development rate to blastocysts among all groups (27.9–33.0%; P &gt; 0.05). The survivability of frozen–thawed embryos was significantly lower in the T1 group (6/13, 46.2%) than in the T2 (11/16, 68.8), T3 (13/18, 72.2%), and control groups (19/26, 73.1%; P &lt; 0.05). In conclusion, the results suggest that ovary transport at 26�C may be optimal for better in vitro development and survival of frozen–thawed embryos produced in vitro. Furthermore, exposure of ovaries to temperatures below 10�C during transport may significantly decrease both in vitro development and survivability of frozen-thawed blastocysts.


2010 ◽  
Vol 22 (1) ◽  
pp. 190
Author(s):  
Y. J. Kim ◽  
K. S. Ahn ◽  
M. J. Kim ◽  
H. Shim

Epigenetic modification influences reprogramming and subsequent development of somatic cell nuclear transfer embryos. Such modification includes an increase of histone acetylation and a decrease of DNA methylation in transferred donor nuclei. Histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) and valproic acid (VPA) have been known to maintain high cellular levels of histone acetylation. Hence, the treatment of HDACi to NT embryos may increase efficiency of cloning. Indeed, TSA treatment has significantly enhanced the developmental competence of nuclear transfer embryos in several species including pigs (Zhang et al. 2007 Cloning Stem Cells 9, 357-363; Li et al. 2008 Theriogenology 70, 800-808). Valproic acid, another type of HDACi, has often been used to assist reprogramming of somatic cells into induced pluripotent stem cells in mice. In the present study, we tested the potency of VPA compared with TSA on the enhancement of in vitro development in porcine nuclear transfer embryos. Reconstructed embryos were produced by transferring nuclei of adult ear skin fibroblasts into enucleated oocytes. After electrical activation, these embryos were cultured in PZM-3 containing no HDACi (control), 5 mM VPA, or 50 nM TSA for 24 h, and another 5 days thereafter without HDACi. At least 3 replicates were conducted for the following experiments. The rates of cleavage were not different among the VPA, TSA, and control groups. However, the rate of blastocyst development was significantly higher (P < 0.05) in embryos treated with VPA than in those treated with TSA and without HDACi (125/306, 40.8% v. 94/313, 30.0% v. 80/329, 24.3%). Differential staining of inner cell mass (ICM) and trophectoderm (TE) also supported the beneficial effect of VPA treatment in NT embryos. Compared with the control group, the number of TE cells was significantly increased (P < 0.05) in the VPA and TSA treatment groups (79.3 ± 7.4 v. 74.6 ± 9.2 v. 40.0 ± 6.7). Moreover, VPA treatment significantly increased (P < 0.05) the number of ICM cells compared with the control (15.6 ± 1.7 v. 10.8 ± 2.6), whereas no differences were observed between the TSA treatment and control group (12.9 ± 3.0 v. 10.8 ± 2.6). The present study demonstrates that VPA enhances in vitro development of nuclear transfer embryos, in particular by an increase of blastocyst formation and the number of ICM cells, suggesting that VPA may be more potent than TSA in supporting developmental competence of cloned embryos. However, long-term effects of different HDACi in the development of nuclear transfer embryos, including any adverse outcome from destabilizing epigenetic condition, remain to be determined by further in vivo embryo transfer studies.


2006 ◽  
Vol 73 (12) ◽  
pp. 1503-1511 ◽  
Author(s):  
A. T. Palasz ◽  
H. Rodriguez-Martinez ◽  
P. Beltran-Breña ◽  
S. Perez-Garnelo ◽  
M. F. Martinez ◽  
...  

2011 ◽  
Vol 23 (1) ◽  
pp. 199
Author(s):  
T. Somfai ◽  
K. Imai ◽  
M. Kaneda ◽  
S. Akagi ◽  
S. Haraguchi ◽  
...  

The aim of the present study was to investigate the effect of oocyte source and in vitro maturation (IVM) on the expression of selected genes in bovine oocytes and their contribution to in vitro embryo development. Follicular oocytes were collected either by ovum pick-up from live cows or by the aspiration of ovaries of slaughtered cows following storage in Dulbecco’s PBS at 15°C for overnight. In vitro maturation was performed according to the method of (Imai et al. 2006 J. Reprod. Dev. 52, 19–29 suppl.). Gene expression was assessed before and after IVM by real-time PCR. The following genes were investigated: GAPDH, G6PDH, ACTB, H2A, CCNB1, MnSOD, OCT4, SOX2, CX43, HSP70, GLUT8, PAP, GDF9, COX1, ATP1A1, CDH1, CTNNB1, AQP3, DYNLL1, DYNC 1/1, and PMSB1. In brief, mRNA was extracted from 20 oocytes per sample using a Qiagen RNeasy Micro Kit (Qiagen, Valencia, CA). Gene expression was analysed by a Roche Light Cycler 480 device and software (Roche, Indianapolis, IN). Relative expression of each gene was normalized to CCNB1, which in preliminary experiments appeared the most stably expressed irrespective of oocyte source and meiotic stage. Three replications were performed. Data were analysed by paired t-test. In immature ovum pick-up oocytes, genes related to metabolism (GAPDH, G6PDH, GLUT8) and stress (MnSOD, HSP70), and also OCT4, ATP1A1, and DYNC1/1 showed significantly (P < 0.05) higher expression compared with immature oocytes collected from slaughtered-stored ovaries. The expression of GDF9, GLUT8, CTNNB1, and PMSB1 was significantly (P < 0.05) reduced during IVM irrespective of the oocyte source. In a second experiment, IVF IVM oocytes showing an early (at 22 to 25 h after IVF) or late (at 27 to 30 h after IVF) first cleavage were either cultured in vitro or analysed for gene expression at the 2-cell stage. A higher (P < 0.05) rate of early-cleaving oocytes developed to the blastocyst stage compared with the rate of late-cleaving ones (46.2% v. 15.6%, respectively). Nevertheless, only ATP1A1 showed significantly reduced (P < 0.05) expression in late-cleaving embryos compared with early-cleaving ones. Our results suggest that although removal and storage of ovaries and IVM caused a reduction in the relative abundance of several genes in oocytes, in most cases, this did not affect embryo development. Among the genes studied, only ATP1A1 was correlated with in vitro development.


2016 ◽  
Vol 28 (2) ◽  
pp. 237
Author(s):  
S. H. Lee ◽  
H. J. Oh ◽  
G. A. Kim ◽  
M. J. Kim ◽  
Y. B. Choi ◽  
...  

In oestrus stage, canine oocytes surrounded by cumulus cells undergo maturation in oviduct for 3 days after ovulation. We hypothesised that canine cumulus cells (cCC) and canine oviduct cells (cOC) in oestrus stage might affect the maturation of oocyte and embryo development. Therefore, the present study was aimed to compare the effects of cCC and cOC co-culture system on oocyte in vitro maturation and embryo in vitro development. cCC were separated from cumulus‐oocyte complex (COC) in ovary from bitches in oestrus phase. cOC were collected from oviduct flushing of bitches in oestrus phase. Both cCC and cOC were cultured and cryopreserved until use for co-culture. In the first experiment, the effect of co-culture using cCC and cOC on porcine oocyte in vitro maturation (IVM) were investigated. The porcine COC were randomly cultured in different co-culture groups as follows: 1) co-culturing with cCC for 42 h, 2) co-culturing with cOC for 42 h, and 3) culturing in absence of cCC or cOC. After IVM, extrusion of the first polar body was observed under a microscope. In the second experiment, the matured oocytes with the first polar body derived from each group were activated with electrical stimulus. Parthenotes were cultured in porcine zygote medium-5 (PZM-5) for 7 days at 39°C, 5% CO2 and O2 in a humidified atmosphere. The embryo developmental competence was estimated by assessing the in vitro development under microscope. The third experiment was to evaluate the reactive oxygen species (ROS) levels in each supernatant medium obtained from cCC and cOC co-culture group after IVM using a OxiselectTM ROS ELISA Assay kit. Last, analysis of genes (MAPK1/3, SMAD2/3, GDF9 and BMP15) expression in cCC and cOC co-cultured with porcine COC using real-time PCR is in progress. As results, IVM rate of cOC group (91.19 ± 0.45%) was significantly higher than that of cCC and control group (86.50 ± 0.61% and 79.81 ± 0.82%; P < 0.05). Also, cOC groups expressed the highest efficiency in cleavage rate, blastocyst formation rate, and the total cell number in blastocyst (P < 0.05). In ROS levels, cOC group (555 ± 7.77 nM) were significantly lower than cCC and control groups (596.8 ± 8.52 nM and 657.8 ± 11.34 nM). The present study demonstrated that co-culture with cOC improved the in vitro oocyte maturation and the in vitro development rate of porcine embryos. The ROS level decreased in cOC co-culture would have beneficial influence on oocytes maturation. For further study, we will investigate the relation between gene expression related to oocyte maturation and the co-culture results. This research was supported by a global PhD Fellowship Program through NRF funded by the Ministry of Education (NRF-20142A1021187), RDA (#PJ010928032015), IPET (#311011–05–4-SB010, #311062–04–3-SB010), Research Institute for Veterinary Science, and the BK21 plus program.


2018 ◽  
Vol 110 ◽  
pp. 79-85 ◽  
Author(s):  
R. Laguna-Barraza ◽  
M.J. Sánchez-Calabuig ◽  
A. Gutiérrez-Adán ◽  
D. Rizos ◽  
S. Pérez-Cerezales

2006 ◽  
Vol 18 (2) ◽  
pp. 187
Author(s):  
J. De la Fuente ◽  
A. Gutiérrez-Adán ◽  
P. Beltrán Breña ◽  
S. S. Pérez-Garnelo ◽  
A. T. Palasz

It is assumed that, contrary to phosphate buffers, zwitterionic buffers are neutral. However, zwitterionic buffers containing hydroxymethyl or hydroxyethyl residues may interact with OH-groups in the media and produce formaldehyde (Shiraishi et al. 1993 Free Radic. Res. Commun. 19, 315-321). Also, it was shown that three zwitterionic buffers tested in this study interact with DNA (Stellwagen et al. 2000 Anal. Biochem. 287, 167-175). Our objective was to evaluate the effect of the following buffers: TES (T), MOPS (M), HEPES (H) (pKa values at 20�C: 7.2-7.5), and PBS on in vitro development and morphology of bovine embryos. Zwitterionic buffers and PBS were prepared at a concentration of 10 mM in TALP medium and the final pH was adjusted to 7.2. Bovine follicular fluid was aspirated from abattoir-derived ovaries and evenly divided into four tubes. Collected oocytes (five replicates) from each tube were processed separately through the entire IVM, IVF, and IVC procedures using washing medium buffered with: PBS (n = 490), Group 1; H (n = 438), Group 2; M (n = 440), Group 3; and T (n = 394), Group 4. All buffers contained 4 mg/mL BSA. Oocytes were matured in TCM-199 + 10% FCS and 10 ng/mL of epidermal growth factor and fertilized in Fert-TALP containing 25 mM bicarbonate, 22 mM sodium lactate, 1 mM sodium pyruvate, 6 mg/mL BSA-FAF, and 10 �g/mL heparin with 1 � 106 spermatozoa/mL. After 24 h, oocytes-sperm co-incubation presumptive zygotes were cultured in SOFaa medium with 8 mg/mL BSA at 39�C under paraffin oil and 5% CO2 in humidified air. Cumulus-oocyte complexes and zygotes were held in designated buffers ?16 min before oocyte maturation, ~7 min after IVM and before IVF, and ~18 min after IVF and before culture. The total time of oocyte/embryo exposure to each buffer was ?41 min. Embryo development was recorded on Days 4, 7, 8, and 9. A total of ten, Day 8 blastocysts were taken randomly from each treatment and fixed in 4% paraformaldehyde for total and apoptotic cells counts, and five blastocysts from each replicate and treatment were frozen for later mRNA analysis. Apoptosis were determined by TUNEL, using commercial In situ Cell Death Detection Kit (Roche Diagnostic, SL, Barcelono, Spain). Embryo development among groups was compared by chi-square analysis. The cleavage rates were not different among the groups: PBS, 70.8%; H, 76.5%; M, 77.5% and T, 73.6%. The number of embryos that developed to d8 cells at Day 4 was higher in M, 36.2%, and PBS, 37.6%, than in H, 30.6%, and T, 29.7%, but was not significantly different. However, more (P < 0.05) blastocysts developed at Days 7, 8, and 9 in H and M than in PBS and T groups (21.9% and 22.9% vs. 16.9% and 14.9%, respectively). No difference was found between groups in total cell number (98.8 � 7, PBS; 111.8 � 11.9, M; 106.8 � 12.9, H; and 104.3 � 9.7, T) and the number of apoptotic cells (9.2 � 1.0, P; 9.2 � 0.8, M; 12.9 � 1.8, H; and 9.7 � 0.9, T). Based on the results of this study, we conclude that within our protocol choice of buffer may affect embryo developmental rates but not morphology.


2013 ◽  
Vol 25 (1) ◽  
pp. 174
Author(s):  
R. Olivera ◽  
C. Alvarez ◽  
I. Stumpo ◽  
G. Vichera

The time allowed for nuclear reprogramming is considered an essential factor for the efficiency of cloning and has not been evaluated in equine aggregated cloned embryos. The aim of our work was to assess the effect of different timing of activation stimulus after fusion of adult equine fibroblast cells to enucleated equine oocytes on embryo development and embryo quality. We processed a total of 1874 equine ovaries, recovering 3948 oocytes, of which 1914 (48.5%) had extruded the first polar body after 24 h of maturation. Oocyte collection, maturation, and the NT procedure were performed as described by Lagutina et al. (2007 Theriogenology 67, 90–98). Reconstructed oocytes (RO) were activated at 3 different times after cell fusion: (1) 1 h, (2) 1.5 h, and (3) 2 h. Activation was performed using 8.7 µM ionomycin for 4 min, followed by a 4-h culture in a combination of 1 mM DMAP and 5 mg mL–1 of cycloheximide. The RO were cultured in the well of the well system, aggregating 3 RO per well. The RO were cultured in DMEM-F12 with 5% fetal bovine serum (FBS) and antibiotics. Cleavage (48 h after activation), blastocyst, and expanded blastocyst rates (8–9 days) were assessed. In vitro development was compared using the chi-square test (P < 0.05). A total of 1608 RO were cultured. Cleavage was significantly lower in group 3 with respect to the other 2 groups [(1): 396/450, 88%; (2): 540/639, 84.5%; (3): 365/519, 70.3%]. There were no significant differences in blastocyst rates within the 3 groups considering the number of total RO [(1): 19/450, 4.2%; (2): 23/639, 3.6%; (3): 15/519, 2.9%] or aggregated RO per well [(1): 12.7%; (2): 10.8%; (3): 8.7%]. However, the rate of blastocyst expansion was higher (P < 0.05) in group 2 than in group 3 [(1): 17/19, 89.5%; (2): 23/23, 100%; (3): 11/15, 73.3%]. In conclusion, the timing of nuclear reprogramming did not affect blastocyst rates but affected cleavage rates and blastocyst quality. This indicates that 1 h before activation stimulus is enough for embryo development of equine aggregated cloned embryos.


2011 ◽  
Vol 23 (1) ◽  
pp. 124
Author(s):  
C. Feltrin ◽  
M. Machado ◽  
L. M. V. Queiroz ◽  
M. A. S. Peixer ◽  
P. F. Malard ◽  
...  

In vitro embryo production by handmade cloning (HMC) usually requires individual embryo culture, because zona-free embryos cannot be grouped in standard in vitro culture (IVC) protocols. The aim of this study was to evaluate the developmental potential of bovine embryos produced by HMC (Ribeiro et al. 2009 Cloning Stem Cells 11, 377–386) after in vitro culture (IVC) in 3 microwell (WOW) systems. After in vitro maturation, oocytes were denuded and incubated in demecolcine (Ibáñez et al. 2003 Biol. Reprod. 68, 1249–1258), followed by zona pellucida removal, oocyte bisection, embryo reconstruction, electrofusion, and chemical activation. Cloned embryos were allocated to 1 of 3 IVC groups: cWOW: conventional microwells (250 μm, round; Vajta et al. 2000 Mol. Reprod. Dev. 55, 256–264); mWOW: modified microwells (130 μm, conical; Feltrin et al. 2006 Reprod. Fert. Dev. 18, 126); and WOW-PDMS: microwells in polydimethylsiloxane chips (170 μm, cylindrical with microchannels); IVF embryos were used as controls (Bertolini et al. 2004 Reproduction 128, 341–354). Cleavage (Day 2), blastocyst (Day 7), and pregnancy (Day 30) rates were analysed by the chi-square test, for P < 0.05. Results are shown in Table 1. Cleavage rates were similar between groups, but development to the blastocyst stage was higher in IVF controls than cloned embryo groups. Among cloned embryo groups, blastocyst rate was higher in the mWOW group than the conventional and the PMDS-based microchannels. Nevertheless, in vivo development to Day 30 of pregnancy was not different between cloned groups. Our results for in vitro embryo development indicated that the mWOW provided more suitable conditions for embryo development to the blastocyst stage when compared with cWOW or even WOW-PDMS. Among some possible reasons include the physical advantage of a smaller microwell that may better mimic the constraining effect of the zona pellucida on the developing embryo. That may also provide greater blastomere stability, favouring the aggregation state during the first rounds of cleavages, also aiding compaction and subsequent cavitation. The narrower microwell system appeared to have promoted better in vitro development than the conventional and the DMPS-based microwell systems, with no impact on subsequent in vivo development. However, the IVC in the WOW-PDMS system supported reasonable rates of development, in accordance with the current literature. Table 1.In vitro development of bovine IVF and cloned embryos produced after the in vitro culture in distinct IVC systems


Sign in / Sign up

Export Citation Format

Share Document