132 SUCCESSFUL EMBRYO TRANSFER OF IN VIVO-PRODUCED RED DEER (CERVUS ELAPHUS) EMBRYOS AFTER CRYOPRESERVATION BY SLOW FREEZING OR VITRIFICATION

2007 ◽  
Vol 19 (1) ◽  
pp. 183
Author(s):  
J. P. Soler ◽  
G. G. Kaiser ◽  
N. Mucci ◽  
L. B. Ferre ◽  
R. H. Alberio

Multiple ovulation and embryo transfer (MOET) programs for red deer (Cervus elaphus) have been established commercially over the last decade, with embryo cryopreservation being a related practice necessary to enhance the use of valuable genetic information. The aim of this work was to establish alternative methods for red deer embryo cryopreservation by using slow freezing with ethylene glycol (SF–EG) and vitrification by open pulled straw (OPS) methods. After surgical flushing of 18 superstimulated donors, 54 transferable embryos were recovered; 28 were transferred fresh to synchronized recipients and the others were cryopreserved by SF–EG (n = 11) or OPS (n = 15), respectively thawed or warmed, and transferred to recipients. Fresh embryos were maintained in Dulbecco's PBS + 20% cow serum (holding medium, HM) until transfer (maximum 3 h after collection). SF–EG cryopreserved embryos were suspended in HM + 1.78 M EG + 0.1 M sucrose + 4 mg mL−1 BSA. After a 10-min equilibration, embryos were loaded individually into 0.25-mL plastic straws and placed into a −7°C methanol bath chamber. After seeding (5 min later), the straws were cooled from −7 to −35°C at a rate of 0.5°C min. Straws were plunged into and stored in liquid nitrogen. Thawing was performed by placing the straws in a 30°C water bath for 30 s; their contents were drained into HM until transfer. Embryos were vitrified using the OPS method with minor modifications. They were first incubated in HM + 1.78 M EG + 1.3 M DMSO for 3 min and then transferred for 25 s into a vitrification solution of HM + 3.56 M EG + 2.6 M DMSO + 0.5 M sucrose. Each embryo was loaded by touching a 1-µL drop with the straw, which was immediately submerged into and stored in liquid nitrogen. Warming was done by placing the narrow end of the straws into HM + 0.25 M sucrose for 5 min. Embryos were then transferred into HM + 0.15 M sucrose for 5 min and finally to HM until transfer. Both types of cryopreserved embryos were transferred a few hours after collection, immediately after thawing or warming. Before embryo transfer, the presence of corpus luteum (CL) of recipients was confirmed by laparoscopic examination. Each embryo was surgically transferred into the apical extreme of the uterine horn ipsilateral to the CL of one recipient. Pregnancy was determined by ultrasonography 41 days after embryo transfer. The pregnancy rate between groups was compared with the chi-square test (P < 0.05). No statistical differences were found between groups (Table 1). Our results show that both vitrification and slow freezing methods with EG are suitable to cryopreserve red deer embryos. Table 1. Pregnancy rates in recipient hinds after transfer of fresh, vitrified, or frozen red deer embryos

2010 ◽  
Vol 22 (1) ◽  
pp. 212
Author(s):  
N. Mucci ◽  
F. Hozbor ◽  
G. G. Kaiser ◽  
E. Sanchez ◽  
R. H. Alberio

Although slow freezing is the method of choice to cryopreserve in vivo-produced ovine embryos, vitrification has became an alternative procedure mostly developed for in vitro-produced bovine embryos. The aim of this work was to compare pregnancy rates after cryopreservation of in vivo-produced ovine embryos with slow freezing or open pulled straw (OPS) vitrification method. Ewes were synchronized using intravaginal sponges containing 60 mg of medroxyprogesterone acetate for 14 d. Superovulation was performed using a total dose of 176 IU of ovine FSH (Ovagen), in 6 decreasing doses (i.m.) from Day 12 to 14 of treatment (Day 0 = sponge placing). Ewes were hand mated with 2 rams of proven fertility. Embryos were recovered 6 days after estrous detection by surgical procedure, evaluated under stereomicroscope, and randomly assigned to the cryopreservation treatments. Slow freezing was performed in D-PBS supplemented with 1.78 M ethylene glycol, 0.1 M sucrose, 4 mg mL-1 of BSA, and 20% serum. Embryos were loaded into 0.25-mL plastic straws and placed into a -7°C methanol bath chamber. After seeding embryos were cooled to -35°C at a rate of 0.5°C/min and then stored in liquid nitrogen. Thawing was performed by placing the straws in a 30°C water bath for 30 sec. Vitrification was performed by using the OPS method (Vajta et al. 1998) with minor modifications. Embryos were incubated in D-PBS supplemented with 1.78 M ethylene glycol, 1.3 M DMSO for 3 min and then transferred for 25 s in vitrification solution of D-PBS with 3.56 M ethylene glycol, 2.6 M DMSO, and 0.5 M sucrose, loaded in a 1 mL drop in the OPS, and immediately submerged into and stored in liquid nitrogen. Warming was performed in D-PBS plus 0.25 M sucrose for 5 min and then into D-PBS plus 0.15 M sucrose for another 5 min. Before embryo transfer, the presence of corpus luteum (CL) was detected by laparoscopic examination. One embryo per recipient was surgically transferred in the apical extreme of the uterine horn ipsilateral to the CL. Pregnancies were determined by ultrasonography 41 days after embryo transfer. Data were analyzed using the chi-square test. We found 47.8% pregnancy rate using slow freezing (11/23) and 43.5% pregnancy rate using OPS vitrification (10/23). Statistical differences were not detected (P = 0.09). We conclude that vitrification by OPS system, with minor modifications, is a suitable procedure for in vivo-produced ovine embryo cryopreservation.


Reproduction ◽  
2000 ◽  
pp. 387-395 ◽  
Author(s):  
KJ Demmers ◽  
HN Jabbour ◽  
DW Deakin ◽  
AP Flint

The role of interferon in early pregnancy in red deer was investigated by (a) measuring production of interferon by the conceptus, (b) testing the anti-luteolytic effect of recombinant interferon-tau in non-pregnant hinds, and (c) treatment of hinds with interferon after asynchronous embryo transfer. Blastocysts were collected from 34 hinds by uterine flushing 14 (n = 2), 16 (n = 2), 18 (n = 8), 20 (n = 13) or 22 (n = 9) days after synchronization of oestrus with progesterone withdrawal. Interferon anti-viral activity was detectable in uterine flushings from day 16 to day 22, and increased with duration of gestation (P < 0.01) and developmental stage (P < 0.01). When interferon-tau was administered daily between day 14 and day 20 to non-pregnant hinds to mimic natural blastocyst production, luteolysis was delayed by a dose of 0.2 mg day(-1) (27.3 +/- 1.3 days after synchronization, n = 4 versus 21 +/- 0 days in control hinds, n = 3; P < 0.05). Interferon-tau was administered to hinds after asynchronous embryo transfer to determine whether it protects the conceptus against early pregnancy loss. Embryos (n = 24) collected on day 6 from naturally mated, superovulated donors (n = 15) were transferred into synchronized recipients on day 10 or day 11. Interferon-tau treatment (0.2 mg daily from day 14 to 20) increased calving rate from 0 to 64% in all recipients (0/11 versus 7/11, P < 0.005), and from 0 to 67% in day 10 recipients (0/8 versus 6/9, P < 0.01). The increased success rate of asynchronous embryo transfer after interferon-tau treatment in cervids may be of benefit where mismatched embryo-maternal signalling leads to failure in the establishment of pregnancy.


2018 ◽  
Vol 30 (1) ◽  
pp. 182
Author(s):  
J. Duran ◽  
D. Argudo ◽  
S. Bravo ◽  
C. Soria ◽  
G. Guevara ◽  
...  

Recipient handling during embryo transfer (ET) induces prostaglandin F2α (PGF2α) production in 2 periods: an early transient and rapid increase around the time of ET, followed by another 2 to 4 h later. This PGF2α is associated with embryonic loss during early gestation by affecting both the embryo and the corpus luteum. To control this, antiprostaglandins such as flunixin meglumine (FM) have been applied IM at the time of ET with varying results. In such studies, the interaction of IM administration of FM and difficulty of transfer has not always been evaluated, possibly confusing the interpretation of the results. Furthermore, IV FM injection at ET and its relationship with pregnancy rates (PR) has not been determined. The objectives were (1) to determine the relationship between difficulty of ET and PR; and (2) to evaluate the efficacy of IM v. IV FM on pregnancy outcomes. One hundred and ten crossbred (Bos taurus × Bos indicus) heifers (18-24 months old) from 3 farms were used as recipients. Two evaluation systems of ET difficulty were used: (1) duration of transfer (objective determination of the elapsed time measured in seconds between the introduction of the catheter and embryo release), and (2) level of difficulty experienced by the practitioner (subjective determination; 1 = minimum and 2 = medium to extreme manipulation). Quality 1 and 2 fresh embryos from superovulated cows were transferred by the same practitioner. At ET, recipients were randomly divided into 3 groups: (1) Control (no treatment, n = 31); (2) FM-IM (n = 39): injected IM with 2.2 mg kg−1 FM at ET; and (3) FM-IV (N = 40): injected with 2.2 mg kg−1 FM IV at ET. Pregnancy was diagnosed at 30 to 40 and 60 to 90 days after ET. Spearman’s test was performed to determine the correlation between duration and difficulty at ET and Chi-square test was used to compare PR. The mean duration of transfer for all heifers was 62.3 ± 57.5 s (11 to 357 s; median: 44.5 s). There was a high correlation (0.8; P < 0.001) between the ET difficulty evaluation systems. Overall, ET difficulty 1 had higher PR than ET difficulty 2 (64.2 v. 40.7; P = 0.013). The PR was significantly improved (P < 0.01) in the FM-IV group (75 and 70% at 30 and 60 days after ET) compared with control (45.2 and 32.3%) and FM-IM (33.3 and 30.7%). In conclusion, results indicate that the difficulty of transfer affects PR achieved following the transfer of in vivo-derived bovine embryos. Treatment with FM-IV following transfer resulted in significantly higher PR compared with control and FM-IM recipients. The IV injection of FM may antagonize the very early and transient increase of PGF2α caused by genital tract manipulation (even gently performed) at embryo transfer. Further research is necessary to confirm the results of the present study.


2012 ◽  
Vol 52 (8) ◽  
pp. 741 ◽  
Author(s):  
V. Malcotti ◽  
V. Pelufo ◽  
N. Bergamo ◽  
E. Aisen

In order to preserve male germoplasm, the recovery and cryopreservation of spermatozoa from the epididymides of hunted animals represents an accessible source of gametes. As a first experimental model, epididymal spermatozoa from slaughtered bulls were recovered at 30, 54, 78 and 102 h after death. The scrotal contents were stored at either 5 or 20°C. The sperm cells of each treatment (time + temperature combinations) were frozen with Triladyl (T) or Triladyl + Trehalose (TT) diluents. In order to assess sperm viability and integrity, post-thawing evaluation included individual motility, supravital stain, hyperosmotic swelling test (E+), acrosome status and sperm chromatin structure assay. Both at raw and post-refrigerated states, the sperm motility rate was higher in sperm obtained from epidydmes stored at 5°C, compared with those stored at 20°C for all collection times. Sperm collected at 102 h after death from epididymides stored at 5°C maintained a motility of 20% (120 h, raw state). When comparisons were carried out after thawing, motility was higher in the 5°C group, achieving the best results with TT diluent (7.5%) at 102 h. However, when supravital stain and E+ tests were observed, viability and membrane integrity were well preserved even at 102 h post mortem (30 and 36%, respectively, with TT diluent at 5°C). These results suggest that frozen-thawed epididymal spermatozoa could have a low motility rate while most of them remain alive. Acrosome status was not greatly affected by storage time. In a second experiment, epididymal spermatozoa from hunted red deer stags (Cervus elaphus) were recovered at 4 and 30 h after death. The scrotal contents were stored at 20°C, because that temperature is closer to field and shipment conditions. The sperm cells were frozen with TT diluent. Post-thawing evaluation included the same parameters indicated for bull spermatozoa. The assessment of spermatozoa collected at 30 hours post mortem and then subsequently frozen and thawed indicated that at this time an acceptable motility rate (35%) and viability (39.7%) were achieved. Frozen and subsequently thawed epididymal spermatozoa showed 47.9% of membrane integrity, 59.3% of acrosome integrity and 26.5% of chromatin damage, using TT diluent. A preliminary in vivo trial demonstrated that the pregnancy rate in artificially inseminated deer decreased when sperm were obtained at 30 h post mortem. According to these results, it may be concluded that storage at 5°C is better than 20°C to obtain well preserved epididymal spermatozoa from bulls, and that TT could be a useful cryoprotectant to preserve viable and fertile sperm cells after the freezing–thawing process. Before these results can be applied to assisted reproduction programs in endangered deer species, some adaptations must be developed.


2013 ◽  
Vol 62 (1) ◽  
pp. 48-54
Author(s):  
Yana Nikolayevna Kravchuk ◽  
Alla Stanislavovna Kalugina

The number of children born after ART, which includes cryopreservation methods, is steadily rising worldwide. Data on perinatal outcomes after transfer of cryopreserved embryos is presented in the article. Analysis of the influence of fertilization method — IVF/ICSI, embryo cryopreservation method — slow freezing method and vitrification is composed.


2020 ◽  
Vol 36 (3) ◽  
pp. 251-270
Author(s):  
Van Do ◽  
Andrew Taylor-Robinson

The goal of cryopreservation is to retain the original stage of gametes and embryos after they have endured cooling and warming. Slow freezing is a standard method for in vivo-derived bovine embryo cryopreservation, threefifths of such embryos being frozen by this method globally. However, it is evident that slow freezing is not efficient for cryopreserving in vitro-produced bovine embryos. Hence, only one-third of in vitro-produced bovine embryos are cryopreserved. Vitrification is a preferred method for storage of human embryos; consequently, it has been explored as a novel means to store in vitro-produced bovine embryos, for which it shows considerable promise as an alternative to slow freezing. This is due to several reasons: vitrification is often less time-consuming than slow freezing; it does not need expensive slow rate freezing machines; and it has been proven to have comparatively higher survival rates. Yet, in the cattle industry vitrification continues to present shortcomings, such as possible toxicity of vitrification solutions and failure to standardize methods, which pose a challenge for its application to in vitro-produced bovine embryos. Therefore, determining the most suitable procedure is crucial to make vitrification more practical in commercial settings.


2007 ◽  
Vol 19 (1) ◽  
pp. 219 ◽  
Author(s):  
S. Moriyasu ◽  
H. Hirayama ◽  
K. Sawai ◽  
S. Kageyama ◽  
S. Aoyagi ◽  
...  

Oxygen consumption is an important indicator of the metabolic activity of living cells, which may provide valuable information for evaluating embryo quality. We have found that the bovine embryos with high oxygen consumption possess stronger potential for further development. However, the relationship between respiratory activity and the pregnancy rate of embryos is still unclear. In this study, we investigated the respiration rates of bisected bovine embryos and the pregnancy rates of demi-embryos after embryo transfer. Compact morula-stage embryos were bisected evenly by micro glass needle. One hundred bisected embryos were incubated for 24 h in embryo culture medium (IVD101; Research Institute for the Functional Peptides, Yamagata, Japan) at 39�C under 5% CO2, 5% O2, 90% N2. After the incubation, demi-embryos were classified into 2 groups: blastocoel-formed (BC) and blastocoel-not-formed (CM) embryos. Oxygen consumption rates of demi-embryos were measured by scanning electrochemical microscopy (SECM; Hokuto Denko Corporation, Tokyo, Japan). Within 3 h after the measurement, 80 demi-embryos were transferred into recipient cows (one demi-embryo/one recipient) at 7–8 days after estrus. Recipient cows were diagnosed for pregnancy by ultrasonography approximately 40 days after estrus. Statistical difference was analyzed by Tukey's post-hoc test and chi-square test. A total of 27 recipient cows became pregnant; the pregnancy rates for cows with CM and BC demi-embryos were 40.6% (13/32) and 29.2% (14/48), respectively. Mean oxygen consumption rates (� 10-14 mol s-1) in pregnant and non-pregnant cows were 0.47 and 0.39 for CM demi-embryos and 0.63 and 0.52 for BC demi-embryos, respectively. Retrospective analysis showed that the respiratory activity of demi-embryos in the pregnant group was higher than those in the non-pregnant group. In particular, the pregnancy rates for demi-embryos with respiratory activity higher than 0.35 in CM and 0.40 in BC groups were 52.0% (13/25) and 35.9% (14/39), respectively. On the other hand, cows with demi-embryos having an oxygen consumption rate under 0.35 in CM (n = 7) and 0.40 in BC (n = 9) groups did not become pregnant. These results demonstrated that bovine demi-embryos with higher respiratory activity showed a high pregnancy rate after embryo transfer. It is generally known that the pregnancy rate after the transfer of bisected embryos is lower than that of whole embryos. The measurement of oxygen consumption by SECM procedures is a useful tool to assess the quality of pre-implantation embryos and may contribute to the improvement of the success rate for bisected embryo transfer.


2007 ◽  
Vol 19 (1) ◽  
pp. 297
Author(s):  
S. Li ◽  
W. Yu ◽  
J. Fu ◽  
Y. Bai ◽  
F. Jin ◽  
...  

Data collected from commercial embryo transfer programs in 63 farms in China during June 2002 to December 2005 was analyzed to examine the effects of various factors (biopsy, freezing, sample size, embryo development and quality, in vitro culture, and recipient quality) on pregnancy rates of in vivo-biopsied embryos. Embryos were flushed from superovulated dairy cattle and subjected to a biopsy for sexing determination using protocols and sexing kits supplied by AB Technology Ltd. Fresh embryos were implanted on the same day or frozen with AG freeze medium (AB Technology Ltd., Pullman, WA, USA) for later transfer. Recipients were synchronized with CIDA + PG protocols. Embryos were cultured in 6-well dishes containing 1.3 mL of holding medium (AB Technology Ltd.) in each well at room temperature (20–25�C) for examination of embryo survival in vitro. The chi-square test was used in statistic analysis. The implantation of fresh embryos after biopsy did not affect pregnancy rates (49.6%, 257/518) compared to that of non-biopsied fresh and frozen–thawed embryo groups (52.9%, 47/140 and 46.6%, 177/380, respectively). However, for biopsied embryos subjected to frozen and thawed procedures before implantation, particularly for those subjected to the removal of a larger biopsy, a reduced pregnancy rate was observed (41.8%, 297/710; P &lt; 0.01). Pregnancy rates among biopsied embryos at 3 different development stages (morula-early blastocyst, blastocyst, and expanded blastocyst) were not different. Similar results were found between embryo groups of grade 1 and 2. A significant decrease in pregnancy rate (0/10) was observed with embryos held in vitro for a longer period of time (&gt;5 h), suggesting detrimental effects of in vitro conditions on embryo survival. The highest pregnancy rate (68.0%) was observed in recipients synchronized for the first time before being implanted with biopsied embryos. Significant decreases in such rates were found in recipients synchronized for the second or third times or those with an abortion history at the first or second synchronization-implantation treatment (P &lt; 0.01). Better pregnancy rates (45.6%, 41/90; 46.1%, 76/165; and 45.5%, 5/11) were obtained for recipients implanted with biopsied embryos at Days 7.5, 8.0, and 8.5 post-heat detection, respectively, compared to 16% at Day 7 (3/18, P &lt; 0.05). It is concluded that mechanical treatment (cutting) does not reduce the survival of biopsied embryos; however, cryopreservation reduces their ability to survive in vivo. The analyses also suggest that holding embryos in vitro should not be longer than 5 h unless more favorable in vitro conditions can be provided. To achieve better results of implantation of biopsied embryos, embryo transfer should be performed during 7.5–8.5 days post-estrus, and the healthy recipients synchronized for the first time should be used.


2006 ◽  
Vol 18 (2) ◽  
pp. 203
Author(s):  
T. Maekawa ◽  
S. Morita ◽  
O. Douchi ◽  
H. Koyama

Selection of animals as recipients of embryo transfer is an important procedure of embryo transfer on farms. Most animals are evaluated for their acceptability as recipients based on the quality of their corpus leteum (CL). However, since rectal palpation is a subjective evaluation method, a more objective method of assessing the suitability of the recipient is required. Cervical mucus may be able to be used to evaluate the condition of the uterus indirectly. The purpose of this study was to investigate the relationship between the properties of cervical mucus and pregnancy rates after embryo transfer in Holstein heifers and cows. Cervical mucus was collected using a swab off the ostium uteri externum and was stained with 5% Giemsa's solution for 20 min one day before embryo transfer. The stained cervical mucus were classified based on the type of staining pattern (Kitamura et al. 2003 Theriogenology 59, 307) into five groups: filiaceous (Type 1), taenia (Type 2), claustral (Type 3), nubecula (Type 4), or aqueous (Type 5). Proportions of the types of cervical mucus and pregnancy rates were analyzed by chi-square test. In Experiment 1, 113 heifers and 266 cows were examined for cervical mucus type. No significant difference was observed in the proportions of the types of cervical mucus between heifers and cows (heifers: 35.4%, 18.6%, 16.8%, 25.7%, and 3.5%; cows: 24.4%, 14.3%, 20.3%, 30.8%, and 10.2% for Types 1∼5, respectively). In Experiment 2, either a fresh or frozen-thawed embryo was implanted in vivo in 84 heifers and 163 cows 7 days after estrus. The heifers and cows were judged to have normal sized CLs (normal, 17 mm or more) and have no vaginal abnormalities such as cervical mucus contaminated with pus and urovagina as per vaginal examination. The proportions of acceptable Type 5 recipients was lower than that of Type 1 (P < 0.05). The pregnancy rates were 47.6% for heifers and 45.4% for cows (Table 1). The pregnancy rates of Types 1–3 (53.5%) were significantly higher than for Types 4 and 5 (29.9%) in the cows (P < 0.05). Although there was no statistically significant difference, the same tendency was observed in the heifers. Pregnancy was unsuccessful in Type 5 recipients, both heifers and cows. The total pregnancy rates of Types 1–3 were significantly higher than for Types 4 and 5 (53.5% vs. 29.9%, P < 0.001). These results suggest that cervical mucus type can serve as an objective selection criterion for embryo recipients. Further, embryo transfer should be avoided in Type 5 recipients. Table 1. Cervical mucus type and pregnancy rates (%) in dairy cattle


Sign in / Sign up

Export Citation Format

Share Document