355 DEVELOPMENTAL COMPETENCE OF IMMATURE BUBALINE CUMULUS - OOCYTE COMPLEXES VITRIFIED BY THE OPEN PULLED STRAW AND CONVENTIONAL STRAW METHODS

2007 ◽  
Vol 19 (1) ◽  
pp. 293
Author(s):  
A. Sharma ◽  
G. N. Purohit

The in vitro maturation (IVM), fertilization (IVF), and morphological changes in buffalo cumulus–oocyte complexes (COCs) cryopreserved by ultrarapid freezing using conventional (CON) and open pulled staw (OPS) methods were tested. COCs were cryopreserved using a vitrification solution comprised of Dulbecco's phosphate-buffered saline+0.5 M sucrose+0.4% BSA and two concentrations (4.5 or 5.5 M) of each cryoprotectant ethylene glycol (EG) and dimethylsulfoxide (DMSO) by either the CON or the OPS method. Vitrified COCs were stored in LN for 7 days and then thawed; morphologically normal COCs were used for IVM (n = 1070) and IVF (n = 933) in 2 separate experiments to record morphological damage of COCs due to vitrification, nuclear maturation 24 h after culture (9 replicates), and fertilization 24 h after insemination (10 replicates). The COCs were matured in vitro in TCM-199 media with hormone supplements and fertilized using TALP-BSA as described previously (Purohit et al. 2005 Anim. Reprod. Sci. 87, 229–239). Freshly collected COCs were separately used for IVM (n = 110) and IVF (n = 130) and kept as controls. The arcsin transformed data of the proportions of oocytes matured or fertilized was compared by Duncan's new multiple range test. The highest proportion of morphologically normal oocytes was seen in 5.5 M EG with the CON method (94.5%) and the lowest was seen in 4.5 M DMSO with the OPS method (82.4%). At the end of experiment 1, it was apparent that IVM in all vitrification groups was significantly lower (P < 0.05) compared to the control group (66.4%). Among the various vitrification treatments, the highest IVM occurred in 5.5 M EG with the OPS method (39.2%) and the lowest in 4.5 DMSO with the CON method (19.3%). Comparison of both concentrations of EG and DMSO showed that the proportion of COCs attaining Metaphase-II (M-II) increased with increasing concentration of both of the cryoprotectants. However, at equal concentration of EG and DMSO, the proportion of COCs attaining M-II was significantly higher in the OPS method compared to the CON method. In experiment 2, a significantly higher (P < 0.05) IVF was seen for fresh COCs (45.4%) compared to vitrified COCs. Among the vitrification treatments, the highest fertilization was seen in 5.5 M EG with the OPS method (33.6%) and the lowest in 4.5 M DMSO with the CON method (15.17%). A dose-dependent increase in the proportion of oocytes fertilized was seen with increasing concentration of both EG and DMSO [CON: 4.5 M (15.2%), 5.5 M (25.6%); OPS: 4.5 M (21.3%), 5.5 M (27.5%)] in both CON and OPS methods. Comparison of the 2 cryoprotectants revealed that EG was better compared to DMSO.At equal concentrations of EG or DMSO, a significantly higher (P < 0.05) proportion of fertilized oocytes was seen in the OPS method compared to the CON method. It was concluded that vitrification results in some damage to oocytes, with decrease in their subsequent IVM and IVF. Developmental capacity of vitrified buffalo oocytes can be improved by using OPS instead of conventional straws.

2008 ◽  
Vol 53 (No. 8) ◽  
pp. 427-433 ◽  
Author(s):  
A. Sharma ◽  
G.N. Purohit

The <i>in vitro</i> maturation (IVM), fertilization (IVF) and morphological changes in buffalo cumulus oocyte complexes (COCs) cryopreserved by ultra rapid freezing using conventional (CON) and open-pulled straw (OPS) methods were tested. COCs were cryopreserved using a vitrification solution comprising of DPBS + 0.5M sucrose + 0.4% BSA and two concentrations (4.5 or 5.5M) of each cryoprotectant ethylene glycol (EG) and dimethylsulfoxide (DMSO) and cryopreserved by either CON or OPS method. Vitrified COCs were stored in LN<sub>2</sub> for seven days and then thawed, and morphologically normal COCs were used for IVM (<i>n</i> = 864) and IVF (<i>n</i> = 933) in two separate experiments to record (1) morphological damage of COCs due to vitrification, (2) nuclear maturation 24 h after culture (nine replicates) and (3) fertilization 24 h after insemination (10 replicates). The COCs were matured <i>in vitro</i> in TCM-199 medium using hormone supplements and fertilized using TALP-BSA. Freshly collected COCs were separately used for IVM (<i>n</i> = 110) and IVF (<i>n</i> = 130) and kept as control. The arcsin transformed data of the proportion of COCs matured or fertilized was compared by DNMR test. The highest proportion of morphologically normal COCs were seen in 5.5M EG with CON method (94.5%) and the lowest were seen in 4.5M DMSO with OPS method (82.4%). At the end of Experiment 1, it was revealed that IVM in all vitrification groups was significantly lower (<i>P</i> < 0.05) compared to control (66.4%). Amongst the various vitrification treatments the highest IVM was seen in 5.5M EG with OPS method (39.2%) and the lowest in 4.5M DMSO with CON method (19.3%). Comparison of both concentrations of EG and DMSO showed that the proportion of COCs attaining metaphase-II (M-II) increased with increasing concentration of both the cryoprotectants. However, at equal concentration of EG and DMSO the proportion of COCs attaining M-II were significantly higher in OPS method compared to CON method. In Experiment 2, a significantly higher (<i>P</i> < 0.05) IVF was seen for fresh COCs (45.4%) compared to vitrified COCs. Amongst the vitrification treatments the highest fertilization was seen for 5.5M EG with the OPS method (33.6 %) and the lowest for the 4.5M DMSO with CON method (15.17%). A dose dependant increase in the proportion of oocytes fertilized was seen with increasing concentration of both EG and DMSO [CON: 4.5M (15.2%), 5.5M (25.6%), OPS: 4.5M (21.3%) and 5.5M (27.5%)] in both CON and OPS methods. Comparison of the two cryoprotectants revealed that EG was better compared to DMSO. At equal concentrations of EG or DMSO a significantly higher (<i>P</i> < 0.05) proportion of fertilized oocytes were seen in OPS method compared to the CON method. It was concluded that developmental capacity of vitrified buffalo COCs could be improved by using OPS in comparison to conventional straws.


Zygote ◽  
2018 ◽  
Vol 26 (2) ◽  
pp. 162-167 ◽  
Author(s):  
Mohamed Fathi ◽  
A. Salama ◽  
Magdy R. Badr

SummaryThe aim of the current study was to investigate the effect of caffeine supplementation during in vitro maturation (IVM) for different maturation times on the developmental potential of canine oocytes recovered from ovariohysterectomized bitches. The recovered cumulus–oocytes complexes were in vitro matured for 72 h. Here, 10 mM caffeine was added to the maturation medium for different incubation times (caffeine from 0–72 h maturation, caffeine for the first 24 h of maturation only, caffeine addition from 24 to 48 h maturation time, caffeine addition from 48 to 72 h maturation or in caffeine-free medium, control group). The matured oocytes were in vitro fertilized using frozen–thawed spermatozoa. The presumptive zygotes were in vitro cultured in synthetic oviductal fluid medium for 5 days. The results showed that both maturation and fertilization rates were significantly higher (P ˂ 0.05) using caffeine-treated medium for the first 24 h of maturation compared with the control and other two groups of caffeine treatment (from 24 to 48 h and from 48 to 72 h), whereas use of caffeine-treated medium for a 0–72 h incubation time did not affect these rates (P > 0.05). Interestingly, the matured oocytes in caffeine-supplemented medium for the first 24 h or from 0–72 h showed a significant (P ˂ 0.05) increase in the total number of cleaved embryos compared with the control group. In conclusion, supplementation of the maturation medium with 10 mM caffeine for the first 24 h of maturation or during the whole maturation time (0–72 h) improved nuclear maturation and subsequent embryo development preimplantation following in vitro fertilization.


Zygote ◽  
2020 ◽  
pp. 1-6
Author(s):  
Ji-Eun Park ◽  
Sang-Hee Lee ◽  
Yong Hwangbo ◽  
Choon-Keun Park

Summary The aim of the present study was to investigate the effects of porcine follicular fluid (pFF) from large-sized (LFF; >8 mm in diameter) and medium-sized (MFF; 3–6 mm in diameter) follicles on the maturation and developmental competence of porcine oocytes. Cumulus–oocyte complexes (COCs) were collected from follicles 3–6 mm in diameter. The collected COCs were incubated for 22 h with LFF or MFF (in vitro maturation (IVM)-I stage) and were incubated subsequently for 22 h with LFF or MFF (IVM-II stage). Cumulus expansion was confirmed after the IVM-I stage and nuclear maturation was evaluated after the IVM-II stage. Intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured and embryonic development was evaluated. Relative cumulus expansion and GSH levels were higher in the LFF group compared with in the MFF group after the IVM-I stage (P < 0.05). After the IVM-II stage, the numbers of oocytes in metaphase-II were increased in the LFF group and GSH content was higher in all of the LFF treatment groups compared with in the MFF treatment groups during both IVM stages (P < 0.05). ROS levels were reduced by LFF treatment regardless of IVM stage (P < 0.05). Blastocyst formation and the total numbers of cells in blastocysts were increased in all LFF treatment groups compared with the control group (P < 0.05). These results suggested that pFF from large follicles at the IVM stage could improve nucleic and cytoplasmic maturation status and further embryonic development through reducing ROS levels and enhancing responsiveness to gonadotropins.


2006 ◽  
Vol 18 (2) ◽  
pp. 272
Author(s):  
K. Kananen-Anttila ◽  
M. Eronen ◽  
J. Matilainen ◽  
M. Kallio ◽  
J. Peippo ◽  
...  

We have studied the effect of suppressed IVM on the developmental competence of bovine oocytes, aiming at elucidating the importance of cytoplasmic maturation in fertilization and embryo development. Six replicates of abattoir-derived oocytes were randomly divided into three IVM groups. Control (n = 950): TCM-199 with glutamax-I (Gibco, Grand Island, NY, USA), 0.25 mM Na-pyruvate, 100 IU mL−1 penicillin and 100 μg mL−1 streptomycin, 50 ng mL−1 FSH, and 10% fetal bovine serum (FBS) (Gibco); Serum+FSH-free (n = 944): same as control but without FSH and FBS; α-amanitin (n = 977): same as control but with 10 μg mL−1 α-amanitin. Nuclear maturation of oocytes was studied 24 h after the onset of IVM, the formation of sperm aster structure 10 hours post-insemination (hpi) and the formation of pronuclei 20 hpi. Sperm aster was visualized with β-tubulin antibody (modified from Navara et al. 1999 Dev. Biol. 162, 29–40). Presumptive zygotes were cultured until Day 7 in modified SOFaaci + 4 mg mL−1 fatty acid-free BSA in 5% O2. Cumulus cell expansion was seen only in the control group. The results of nuclear maturation, fertilization, and embryo development are summarized in Table 1. Serum and FSH deprivation did not have a statistically significant effect on the parameters studied (vs. control). α-amanitin exposure during IVM reduced nuclear maturation, fertilization, and Day 3 embryo cleavage vs. control, and resulted in total blockage of Day 7 blastocyst development. The treatment groups had significantly smaller mean diameters of male pronuclei (control: 14 ± 0.6 μ­m; serum+FSH-free: 12 ± 0.5 μ­m, P < 0.05; α-amanitin: 10 ± 0.6 μ­m, P < 0.001) and sperm asters (control: 86 ± 4 μ­m; serum+FSH-free: 82 ± 4 μ­m, P < 0.01; α-amanitin: 49 ± 7 μm, P < 0.001) (nonparametric Kruskall Wallis and Mann-Whitney U tests) vs. control group. Despite reduction in pronucleus and sperm aster diameter, serum and FSH deprivation during IVM did not affect in vitro developmental competence of bovine oocytes, suggesting a need for re-evaluation of the components of IVM. α-Amanitin exposure in IVM disturbed nuclear maturation, fertilization, and embryo development, indicating the essence of early transcription. Table 1. Average percentages ± (n) for nuclear maturation, fertilization (min two pronuclei), embryo cleavage, and blastocyst development


Zygote ◽  
2011 ◽  
Vol 20 (3) ◽  
pp. 249-259 ◽  
Author(s):  
Hisashi Nabenishi ◽  
Hiroshi Ohta ◽  
Toshihumi Nishimoto ◽  
Tetsuo Morita ◽  
Koji Ashizawa ◽  
...  

SummaryIn the present study, we investigated the effects of various concentrations of cysteine (0.0, 0.6, 1.2 and 1.8 mM) added to the maturation medium on nuclear maturation and subsequent embryonic development of bovine oocytes exposed to heat stress (HS: set at 39.5 °C for 5 h, 40.0 °C for 5 h, 40.5 °C for 6 h, and 40.0 °C for 4 h versus 38.5 °C for 20 h as the control group). This regime mimicked the circadian rhythm of the vaginal temperature of lactating dairy cows during the summer season in southwestern Japan. Moreover, we also evaluated the oocyte's reactive oxygen species (ROS) and glutathione (GSH) levels and the apoptosis levels of the oocytes and cumulus cells in the presence or absence of 1.2 mM cysteine. As a result, HS in the without-cysteine group significantly suppressed (p < 0.05) both the nuclear maturation rate up to the metaphase (M)II stage and the blastocyst formation rate compared with that of the control group. In addition, this group showed significantly higher (p < 0.05) ROS levels and significantly lower (p < 0.05) GSH levels than those of the control group. Moreover, the level of TdT-mediated dUTP nick end labelling (TUNEL)-positive cumulus cells in the HS without-cysteine group was significantly higher (p < 0.05) than that of the control group. However, the addition of 1.2 mM cysteine to the maturation medium restored not only the nuclear maturation, blastocyst formation rates and GSH contents, but also increased the ROS and TUNEL-positive levels of the cumulus cells, but not oocytes, to that of the control group. These results indicate that the addition of 1.2 mM cysteine during in vitro maturation (IVM) may alleviate the influence of heat stress for oocyte developmental competence by increasing GSH content and inhibiting the production of oocyte ROS followed by apoptosis of cumulus cells.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 741
Author(s):  
Dongjin Oh ◽  
Joohyeong Lee ◽  
Eunhye Kim ◽  
Seon-Ung Hwang ◽  
Junchul-David Yoon ◽  
...  

Interleukin-7 (IL-7) is a cytokine essential for cell development, proliferation and survival. However, its role in oocyte maturation is largely unknown. To investigate the effects of IL-7 on the in vitro maturation (IVM) of porcine oocytes, we analyzed nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, and subsequent embryonic developmental competence after parthenogenetic activation (PA) under several concentrations of IL-7. After IVM, IL-7 treated groups showed significantly higher nuclear maturation and significantly decreased intracellular ROS levels compared with the control group. All IL-7 treatment groups exhibited significantly increased intracellular GSH levels compared with the control group. All oocytes matured with IL-7 treatment during IVM exhibited significantly higher cleavage and blastocyst formation rates after PA than the non-treatment group. Furthermore, significantly higher mRNA expression levels of developmental-related genes (PCNA, Filia, and NPM2) and antioxidant-related genes (GSR and PRDX1) were observed in the IL-7-supplemented oocytes than in the control group. IL-7-supplemented cumulus cells showed significantly higher mRNA expression of the anti-apoptotic gene BCL2L1 and mitochondria-related genes (TFAM and NOX4), and lower transcript levels of the apoptosis related-gene, Caspase3, than the control group. Collectively, the present study suggests that IL-7 supplementation during porcine IVM improves oocyte maturation and the developmental potential of porcine embryos after PA.


2004 ◽  
Vol 16 (9) ◽  
pp. 204
Author(s):  
M. L. Sutton McDowall ◽  
R. B. Gilchrist ◽  
J. G. Thompson

Glucose is an important substrate for in vitro oocyte maturation (IVM) and is metabolised by cumulus oocyte complexes (COCs) via glycolysis or is used for extracellular matrix (ECM) synthesis. Follicular glucose concentration is significantly lower than commonly used IVM media (2.3�mM v. 5.6�mM in TCM199). Glucosamine is an alternative substrate for ECM and supplementation to IVM media reduces glucose uptake by COCs. The aim of this study was to determine the effect of glucose and glucosamine supplementation during IVM on bovine oocytes. First, bovine COCs (n�=�400) were matured in TCM199 (containing pyruvate, BSA, hCG and FSH), or synthetic follicular fluid medium (SFFM; a defined medium based on bovine follicular fluid composition) with 2.3�mM or 5.6�mM glucose���5�mM glucosamine and nuclear maturation was assessed after 24 and 30�h. Significantly less COCs matured in 2.3�mM glucose completed nuclear maturation compared to COCs matured in 5.6�mM glucose (P�<�0.05), whereas glucosamine had no effect on meiotic maturation. We then compared oocyte developmental capacity following IVM (n�=�600) in TCM199 or SFFM�+�5.6�mM glucose���5mM glucosamine. Blastocyst production was severely perturbed when COCs were matured in the presence of glucosamine (–glucosamine 32% v. +glucosamine 4%; P�<�0.001). To determine the cause of this reduction in oocyte developmental competence, we investigated oocyte protein synthesis by maturing COCs (n�=�100) in SFFM�+�5.6�mM glucose���5mM glucosamine�+�1�mM L-[2,3,4,5,6–3H] phenylalanine. In the presence of glucosamine, oocyte protein synthesis was reduced 40% compared to oocytes matured in control medium (P�<�0.05). These results demonstrate that while glucosamine supplementation has no effect on oocyte nuclear maturation, cytoplasmic maturation is compromised, as demonstrated by perturbed oocyte protein synthesis and embryo development. In contrast, glucose concentration has a significant influence on meiotic progression. This provides a useful model to investigate the mechanisms of establishment of developmental competence in oocytes following maturation.


2012 ◽  
Vol 24 (1) ◽  
pp. 207
Author(s):  
Y. Jeon ◽  
S.-S. Kwak ◽  
S.-A. Jeong ◽  
R. Salehi ◽  
Y. H. Seong ◽  
...  

Trans-ε-viniferin is a naturally occurring polyphenol belonging to the stilbenoids family. Trans-ε-viniferin is isolated from Vitis amurensis, 1 of the most common wild grapes in Korea, Japan and China. We investigated the effects of trans-ε-viniferin on in vitro maturation (IVM) and developmental competence after IVF or parthenogenesis (PA). At the laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Chungbuk National University, trans-ε-viniferin was purified from the leaves and stems of Vitis amurensis. Data were analyzed with SPSS 17.0 using Duncan's multiple range test. First, in total, 594 cumulus–oocyte complexes (COC) were used for the evaluation of nuclear maturation. The COC were matured in TCM-199 medium supplemented with various concentrations of trans-ε-viniferin (0, 0.1, 0.5, 1.0 and 5.0 μM) with 10% porcine follicular fluid, 10 IU mL–1 of eCG and 10 IU mL–1 of hCG. After 22 h in maturation culture, the COC were cultured in hormone-free medium supplemented with various concentrations of trans-ε-viniferin for an additional 22 h and then nuclear maturation was evaluated. Second, in total, 300 matured oocytes were used to examine the effects of different trans-ε-viniferin concentrations (0, 0.5 and 5.0 μM) on porcine oocyte intracellular glutathione (GSH) and reactive oxygen species (ROS) levels. Lastly, the developmental competence of oocytes matured with different concentrations of trans-ε-viniferin (0, 0.5 and 5.0 μM) was evaluated after IVF or PA. In total, 711 embryos were evaluated. As results, we observed that trans-ε-viniferin treatment during IVM did not improve the nuclear maturation of oocytes in any group (84.2, 86.6, 85.5, 83.3 and 79.2%, respectively), but significantly increased (P < 0.05) intracellular GSH levels in the 0.5 μM group (0 μM vs 0.5 μM; 14.6 vs 16.8 pmol oocyte–1) and reduced ROS levels (0 μM vs 0.5 μM and 50 μM; 174.6 vs 25.7 and 23.8 pixel oocyte–1). Oocytes treated with trans-ε-viniferin during IVM did not have significantly different cleavage rates or blastocyst formation rates after IVF, but total cell numbers were significantly higher (P < 0.05) in the 0.5 and 5.0 μM treatment groups (53.6 ± 4.0 and 47.9 ± 3.1) compared to the control group (36.4 ± 2.2). The PA embryos showed similar results; there were no significant differences in cleavage rates and blastocyst formation rates, but the total cell number significantly increased in the 0.5 and 5.0 μM treatment groups (59.6 ± 4.2 and 60.8 ± 4.6) compared to the control group (43.1 ± 2.1). In conclusion, these results indicate that trans-ε-viniferin treatment during porcine IVM increased total cell number of blastocysts, possibly through increasing intracellular GSH synthesis and reducing ROS levels. This work was supported by a grant from the Korea institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry & Fisheries, Republic of Korea.


2018 ◽  
Vol 38 (12) ◽  
pp. 2207-2212
Author(s):  
Vívian R.A. Mendes ◽  
Eduardo P. Costa ◽  
Vanessa L.D. Queiroz ◽  
Abelardo Silva Júnior ◽  
Saullo V.P. Alves ◽  
...  

ABSTRACT Bovine herpesvirus 1 (BoHV-1) is an important bovine pathogen that is responsible for causing respiratory diseases and reproductive failures. The presence of BoHV-1 in an in vitro embryo production system affects fertilization, maturation, and embryonic development. The objective of this study was to evaluate the developmental capacity of oocytes from naturally infected cows with no reproductive history. Moreover, this study investigated the presence of viral DNA in cumulus oophorus complexes (COCs). Experimental groups were differentiated by titrating the antibodies detected through seroneutralization assays, establishing three groups: seronegative animals (titer lower than 2), low titer (2 to 8), and animals with a titer above or equal to 16. COCs were obtained from 15 donors during 22 sessions of ultrasound-guided follicular aspiration. DNA was extracted from a pool of COCs obtained from all aspirations from the same donor as well as from whole blood and nested PCR reactions were performed. Only COCs with a compact layer of cumulus cells, an intact zona pellucida, and homogeneous cytoplasm were selected for in vitro culture and evaluation of nuclear maturation rate. After culturing for 24 hours, the oocytes were fixed and stained to evaluate the meiotic cell cycle stage. Oocytes that showed a chromosomal configuration in metaphase II were considered to have reached nuclear maturation. Compared with the other groups, the oocyte nuclear maturation rate in animals with a titer greater than or equal to 16 (50%) was compromised (P< 0.05). However, the viral titer did not influence the maturation rate of bovine oocytes in animals exhibiting low titration (62.2%) when compared with the control group (76.7%). Viral DNA was not observed in the blood samples but was detected in the COC pool from three seropositive donors. In view of the results obtained, we conclude that natural infections by the BoHV-1 virus can compromise the nuclear maturation rate in cows, depending on the titration levels of antibodies against the virus. Moreover, viral DNA could be present in COCs, contradicting the hypothesis that seropositive animals with no history of clinical symptomatology pose a negligible risk of transmitting BoHV-1 by COCs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247518
Author(s):  
Thais Preisser Pontelo ◽  
Mauricio Machaim Franco ◽  
Taynan Stonoga Kawamoto ◽  
Felippe Manoel Costa Caixeta ◽  
Ligiane de Oliveira Leme ◽  
...  

This study aimed to evaluate the effect of scriptaid during pre-maturation (PIVM) and/or maturation (IVM) on developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were submitted to PIVM for 6 h in the presence or absence of scriptaid. COCs were distributed into five groups: T1-IVM for 22 h, T2-PIVM for 6 h and IVM for 22 h, T3-PIVM with scriptaid for 6 h and IVM for 22 h, T4-PIVM for 6 h and IVM with scriptaid for 22 h, and T5-PIVM with scriptaid for 6 h and IVM with scriptaid for 22 h. Nuclear maturation, gene expression, cumulus cells (CCs) expansion, and embryo development and quality were evaluated. At the end of maturation, all groups presented the majority of oocytes in MII (P>0.05). Only HAT1 gene was differentially expressed (P<0.01) in oocytes with different treatments. Regarding embryo development at D7, T4 (23%) and T5 (18%) had lower blastocyst rate (P<0.05) than the other treatments (T1 = 35%, T2 = 37% and T3 = 32%). No effect was observed when scriptaid in PIVM was used in less competent oocytes (P>0.05). In conclusion, presence of scriptaid in PIVM and/or IVM did not improve developmental competence or embryo quality.


Sign in / Sign up

Export Citation Format

Share Document