scholarly journals Porcine follicular fluid derived from > 8 mm sized follicles improves oocyte maturation and embryo development during in vitro maturation of pigs

Zygote ◽  
2020 ◽  
pp. 1-6
Author(s):  
Ji-Eun Park ◽  
Sang-Hee Lee ◽  
Yong Hwangbo ◽  
Choon-Keun Park

Summary The aim of the present study was to investigate the effects of porcine follicular fluid (pFF) from large-sized (LFF; >8 mm in diameter) and medium-sized (MFF; 3–6 mm in diameter) follicles on the maturation and developmental competence of porcine oocytes. Cumulus–oocyte complexes (COCs) were collected from follicles 3–6 mm in diameter. The collected COCs were incubated for 22 h with LFF or MFF (in vitro maturation (IVM)-I stage) and were incubated subsequently for 22 h with LFF or MFF (IVM-II stage). Cumulus expansion was confirmed after the IVM-I stage and nuclear maturation was evaluated after the IVM-II stage. Intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured and embryonic development was evaluated. Relative cumulus expansion and GSH levels were higher in the LFF group compared with in the MFF group after the IVM-I stage (P < 0.05). After the IVM-II stage, the numbers of oocytes in metaphase-II were increased in the LFF group and GSH content was higher in all of the LFF treatment groups compared with in the MFF treatment groups during both IVM stages (P < 0.05). ROS levels were reduced by LFF treatment regardless of IVM stage (P < 0.05). Blastocyst formation and the total numbers of cells in blastocysts were increased in all LFF treatment groups compared with the control group (P < 0.05). These results suggested that pFF from large follicles at the IVM stage could improve nucleic and cytoplasmic maturation status and further embryonic development through reducing ROS levels and enhancing responsiveness to gonadotropins.

2015 ◽  
Vol 27 (1) ◽  
pp. 240
Author(s):  
J. D. Yoon ◽  
E. Lee ◽  
S.-H. Hyun

Growth differentiation factor 8 (GDF8) is a member of the transforming growth factor-β that has been identified as a strong physiological regulator. The purpose of this study was to investigate the effects of GDF8 on in vitro porcine oocytes maturation and subsequent embryonic development after pathenogenetic activation (PA) and in vitro fertilization (IVF). We investigated nuclear maturation, intracellular glutathione (GSH), reactive oxygen species (ROS) levels, sperm penetration (SP) analysis, and subsequent embryonic development after PA and IVF. Each concentration (0, 1, 10, and 100 ng mL–1) of GDF8 was added in maturation medium during process of in vitro maturation. Data were analysed by ANOVA followed by Duncan using SPSS (Statistical Package for Social Science) mean ± s.e.m. After 44 h of IVM, no significant difference was observed on nuclear maturation from the different concentration (0, 1, 10, and 100 ng mL–1) of GDF8 treatment groups (85.5, 85.9, 89.4, and 87.6%, respectively) compared with the control (P > 0.05). The 10- and 100-ng mL–1 GDF8-treated groups showed a significant (P < 0.05) decrease in intracellular ROS levels compared with other groups. The embryonic developmental competence after PA was affected with GDF8 treatment during IVM. The 10- and 100-ng mL–1 treatment groups showed significantly (P < 0.05) higher cleavage rates (67.5 and 69.1%, respectively) compared with control group (53.7%). The 10- and 100-ng mL–1 treatment groups also showed significantly (P < 0.05) higher blastocyst formation rates (50.5 and 52.7%, respectively) compared with other groups (34.5 and 35.8%). The IVF embryonic developmental competence also was affected with GDF8 treatment during IVM. The 10-ng mL–1 treatment group showed a significantly (P < 0.05) higher blastocyst formation rates and total cell number compared with control (21.5 and 131.3 v. 15.0 and 92.6%, respectively). Also, in the sperm penetration assessment, the 10- and 100-ng mL–1 treatment groups showed higher mono spermy ratio and fertilization efficiency (32.7 and 27.1, 32.0 and 26.5 v. 22.6 and 19.7%, respectively) than control, which was significant (P < 0.05). In conclusion, the treatment with 10 ng mL–1 of GDF8 during IVM improved the PA and IVF porcine embryo developmental competence by decreasing the intracellular ROS levels.This work was supported, in part, by a grant from the Next-Generation BioGreen 21 Program (No. PJ00956901), Rural Development Administration, and the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2013R1A2A2A04008751), Republic of Korea.


2005 ◽  
Vol 17 (2) ◽  
pp. 301 ◽  
Author(s):  
L. Tubman ◽  
A. Peter ◽  
R. Krisher

Metabolic mechanisms control both nuclear and cytoplasmic maturation in oocytes. Elevated glucose metabolism is typically associated with improved developmental competence. The objective of this study was to compare nuclear maturation, oocyte metabolism, and subsequent embryonic development following the use of different energy substrates during in vitro maturation (IVM) and to determine the specific role of each substrate. Cumulus-oocyte complexes (20–50/treatment (Trt)/replicate) were placed into maturation medium for 42 h in 7% CO2 in air at 38°C. Maturation treatments included a negative control (NC; 0.01 mM pyruvate and 6 mM lactate), addition of 1:100 dilution of fatty acids (FA; Gibco, Grand Island, NY, USA), 1 × NEAA/0.5 × EAA/1 mM glutamine (AA), or 2 mM glucose (GLU) individually; and a positive control (PC; addition of all three substrates). For each of six replicates, metabolism of 10 denuded oocytes/treatment was measured in hanging drops containing labeled glucose (0.0125 mM 5-3H glucose, glycolysis; 0.482 mM 1-14C glucose, pentose phosphate pathway, PPP). Oocytes were then fixed and stained for determination of meiotic stage. Remaining oocytes were fertilized and cultured in vitro. Cleavage and blastocyst development were recorded at 30–40 and 144 h post-insemination, respectively. The Purdue Porcine Media system was used throughout (PPM; Herrick et al. 2003 Reprod. Fertil. Dev. 15, 249–254). All data were subjected to analysis of variance. Oocyte metabolism and embryonic development are presented In Table 1. Except for FA, energy substrate influenced the percentage of oocytes reaching metaphase II (NC, 1.37 ± 0.01; FA, 1.35 ± 0.01; AA, 33.33 ± 0.06; GLU, 25.81 ± 0.06; PC, 54.29 ± 0.06) but age of oocyte donor did not. Blastocyst metabolism and cell number were not affected by treatment. In general, sows were more responsive to treatment effects. These data demonstrate that exogenous fatty acids do not play a role in porcine oocyte maturation. Amino acids appear to promote meiosis and glycolysis, but do not support oocyte developmental potential. Elevated metabolism in this treatment may be due to a recovery effect when glucose-starved oocytes were placed into glucose containing metabolism medium. Glucose appears to be important for meiosis and cytoplasmic maturation leading to developmental competence with minimal effect on oocyte metabolism. The success of the positive control suggests that a combination of glucose and amino acids is beneficial to maturation and embryonic development of porcine oocytes. Table 1. Metabolism and development of oocytes after IVM


2004 ◽  
Vol 9 (1) ◽  
Author(s):  
M.G.L. PINTO ◽  
M.I.B. RUBIN ◽  
C.A.M. SILVA ◽  
T.F. HILGERT ◽  
M.F. SÁ FILHO ◽  
...  

O desenvolvimento embrionário de oócitos bovinos maturados in vitro (MIV) foi avaliado em meio suplementado com líquido folicular eqüino (Lfe). Foram distribuídos 1045 oócitos em 11 repetições formando três grupos tratamentos (T1, T2, T3) e um controle (C). O meio de maturação utilizado foi o TCM-199 acrescido de piruvato de sódio, hormônio folículo estimulante recombinante (rFSHh) e hormônio luteinizante equino (LHe). Suplementou-se esse meio com 10% de soro de égua em estro para o grupo controle e para T1, T2 e T3, o meio foi suplementado com 5, 10, e 20% de LFe, respectivamente. Os oócitos foram maturados in vitro (MIV) por 24h. A fecundação in vitro (FIV) foi realizada em meio Talp-Fert. A MIV e a FIV foram realizadas em estufa a 39ºC com 5% de CO2 em ar e umidade saturada. Os zigotos foram cultivados em meio SOFaaci, sob óleo mineral no interior de bolsas plásticas gaseificadas. As taxas de clivagem e de blastocistos foram observadas diariamente (D), e em D7, foram superiores (P0,05) às do grupo controle. Em D9, a taxa de blastocistos do T2 foi superior (P0,05). O LFe, na concentração de 10% pode ser utilizado, em substituição ao soro de égua em estro para suplementar o meio de MIV de oócitos bovinos. Equine follicular fluid on in vitro maturation of bovine oocytes Abstract Embryo development of bovine oocytes was evaluated using maturation medium supplemented with equine follicular fluid (eFF). One thousand and forty five (1045) oocytes were distributed in 11 replications forming three treatment groups (T1, T2 e T3) and one Control (C). TCM-199 added with sodium pyruvate, rFSHh and LHe was used as maturation medium. This medium was supplemented with 10% estrous mare serum for Control group, and 5, 10, and 20% eFF, respectively, for T1, T2 e T3 groups. In vitro maturation (IVM) of all groups was performed during 24h. In vitro fertilization (IVF) was performed in TALP-FERT medium. IVM and IVF were carried out in an incubator at 39ºC with 5% CO2 in air and saturated humidity. Zygotes were cultured in SOFaaci medium, under mineral oil in gasified bags. Cleavage and blastocyst rates were daily observed (D), and at D7, were higher (P0.05) for those from control group. At D9, blastocyst rate of T2 was higher (P0.05). The eFF, at a 10% concentration, can replace the use of estrous mare serum to supplement the IVM medium of bovine oocytes.


2014 ◽  
Vol 26 (1) ◽  
pp. 200 ◽  
Author(s):  
C. de Frutos ◽  
R. Vicente-Perez ◽  
P. J. Ross

In vitro maturation (IVM) of oocytes in domestic animals is a widespread practice of research and commercial relevance. Gonadotropic hormones are typically supplemented to the IVM medium to stimulate resumption of meiosis, progression to metaphase II (MII), and oocyte developmental competence. The common use of pituitary-derived products presents 2 problems: contamination from other pituitary hormones and inconsistences from batch-to-batch variation. Recombinant hormones can help circumvent these issues and identify specific gonadotropin requirements for in vitro maturation. The aim of the present study was to determine the effect of supplementing recombinant bovine LH and/or FSH (AspenBio) to the maturation of ovine oocytes in terms of cumulus expansion and progression to the MII stage. Abattoir-derived sheep cumulus–oocyte complexes (COC) were obtained from 1- to 5-mm-diameter antral follicles by ovary slicing. Oocytes with a homogeneous cytoplasm surrounded by at least 3 layers of cumulus cells were selected and cultured in serum-free IVM medium (Cotterill et al. 2012 Reproduction 144, 195–207) at 38.5°C and 5% CO2. The COC obtained from 8 replicates were allocated into 4 experimental groups: (1) no hormones; (2) 1.5 μg mL–1 recombinant bovine LH (rbLH); (3) 1.5 μg mL–1 recombinant bovine FSH (rbFSH); and (4) rbLH and rbFSH. The expansion of cumulus cells was recorded in each group after 24 h of IVM and COC classified as (1) very poor or no cumulus expansion (grade 1); (2) limited cumulus expansion (grade 2); and (3) full cumulus expansion (grade 3). Nuclear maturation in the 4 treatments was evaluated by assessing progression to the MII stage via DNA staining with Hoechst 33342 and fluorescence imaging. The effect of treatment on the observed proportion of MII oocytes was evaluated using a mixed logit model including treatment and replicate as fixed and random effects, respectively. Culture in IVM medium in the absence of gonadotropins or in the presence of rbLH resulted in poor cumulus expansion (grade 1). The supplementation of IVM medium with rbFSH (with or without rbLH) yielded a high degree of cumulus expansion (grades 2–3). Likewise, addition of rbFSH enhanced progression of oocytes to the MII stage, whereas use of rbLH, although it had an effect on progression to MII, did not augment the effect of rbFSH (Table 1). These results indicate that rbFSH is necessary and sufficient to induce sheep oocyte maturation in a high proportion of oocytes. Table 1.Cumulus expansion and oocyte nuclear stage after IVM


2016 ◽  
Vol 28 (2) ◽  
pp. 235
Author(s):  
J. D. Yoon ◽  
E. Lee ◽  
S.-H. Hyun

Growth differentiation factor-8 (GDF8) is a member of the transforming growth factor-β that has been identified as a strong physiological regulator. SB-431542 (SB) is a specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors such as ALK4, ALK5, and ALK7. The purpose of this study is investigation of the effects of GDF8 and SB on porcine oocytes during in vitro maturation and subsequent embryonic development. We first performed ELISA to detect GDF8 concentrations in follicular fluid for each size of follicle; sizes were as follows: small (<3 mm), medium (>3 mm and <6 mm), and large (>6 mm) follicle. After detection of the GDF8 concentration in follicular fluid, we investigated the effect of GDF8 and SB treatment during in vitro maturation (IVM) on nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels, and embryonic development after IVF and parthenogenetic activation (PA). Data were analysed by ANOVA followed by Duncan using SPSS (Statistical Package for Social Science, IBM, New York, NY, USA) mean ± SEM. The ELISA result showed different concentrations of GDF8 for each grade of follicular fluid: small, 0.479 ng mL–1; medium, 0.668 ng mL–1; and large, 1.318 ng mL–1. During the IVM process, 1.318 ng mL–1 of GDF8 and 5 ng mL–1 of SB were added to the maturation medium as control, SB, SB+GDF8, and GDF8 treatment groups. After 44 h of IVM, GDF8 group (90.4%) showed a significantly higher nuclear maturation rate than control and SB+GDF8 groups (85.4 and 81.7%). The SB group (78.9%) showed significantly reduced nuclear maturation rate compared with control (P < 0.05). The GDF8 treatment group showed a significant decreased intracellular ROS and increased GSH levels compared with other groups (P < 0.05). The SB+GBF8 treatment group showed a significantly better cytoplasmic maturation than the SB treatment group. In the PA embryonic development analysis, the GDF8 treatment group showed a significantly higher blastocyst formation rate compared with other groups (47.9, 37.2, 46.4, and 58.7% respectively; P < 0.05). In the IVF embryonic development analysis, the GDF8 treatment groups showed significantly higher blastocyst formation rate compared with the SB group (28.2 and 42.2%, respectively; P < 0.05). In conclusion, treatment with GDF8 during porcine oocyte IVM improved the embryonic developmental competence via increased cytoplasmic maturation and led to better oocyte maturation from the ALK receptor inhibition by SB.


2016 ◽  
Vol 28 (2) ◽  
pp. 234
Author(s):  
P. Ferré ◽  
T. T. M. Bui ◽  
M. T. Tran ◽  
T. Wakai ◽  
H. Funahashi

The interruption of communication between oocyte and cumulus cells (CC) can trigger meiotic resumption and exogenous additives, such as follicular fluid (FF) and growth differentiation factor-9 (GDF9), can improve oocyte quality and the developmental competence. This study was undertaken to examine if the absence and presence of FF from medium follicles (MF; 3–6 mm in diameter) or recombinant human GDF9 (Biovision, Milpitas, CA, USA) during the first or/and second half of in vitro maturation (IVM) had any effects on IVM of oocytes from small follicles (SF; 0.5–2 mm in diameter) or MF when the oocytes were denuded at 20 h after the start of IVM. Cumulus-oocyte complexes (COC) were aspirated from SF or MF of slaughtered prepubertal gilt ovaries. Groups of ~30 COC were cultured in a 300-μL drop of porcine oocyte medium containing 50 µM β-mercaptoethanol (mPOM) with or without 10% (v/v) FF and/or 100 ng mL–1 GDF9 at 39°C and 5% CO2 in air. During the first 20 h after the start of IVM, the medium was supplemented with 1 mM dibutyryl c-AMP, 10 IU mL–1 eCG and 10 IU mL–1 hCG. After the first period of IVM, the CC surrounding the oocytes were removed and the denuded oocytes continued culture for IVM with or without FF or/and GDF9 in the absence of dibutyryl c-AMP and gonadotropins in the same medium for another 24 h. At the end of IVM, meiotic progression of the oocytes was examined by DAPI staining. Statistical analyses from at least 4 replicates data were performed by a 2-way ANOVA and a Tukey’s multiple comparisons test. Removal of CC 20 h after the start of IVM significantly improved the incidence of mature oocytes derived from SF (59.2–64.1% v. 41.6–43.1% in controls, P < 0.05) but not from MF (73.1–78.5% v. 70.6–71.8% in controls), whereas regardless of supplementation with FF or GDF9, the maturation rates were always significantly higher in the denuded oocytes from MF (72.4–83.6%) than SF (57.8–66.2%; P < 0.05). Despite of the origin of COC (SF or MF), maturation rates of oocytes denuded 20 h after the start of IVM were not affected by supplementation with FF or GDF9 during the first and/or second half of IVM (P > 0.05). In summary, CC removal from COC 20 h after the start of IVM promotes nuclear maturation of oocytes from SF. Exogenous additives such as GDF9 and follicular fluid from MF do not seem to affect the promotion of nuclear maturation in our experimental conditions.


2015 ◽  
Vol 27 (1) ◽  
pp. 237
Author(s):  
R. Appeltant ◽  
T. Somfai ◽  
M. Nakai ◽  
S. Bodo ◽  
D. Maes ◽  
...  

Recent research has revealed that oocyte-secreted factors (OSF) affect cumulus expansion and play important roles during maturation and embryo development of mammalian oocytes. The use of denuded oocytes (DO) as supplements during in vitro maturation (IVM) in a nondefined medium improved developmental competence of cumulus-enclosed porcine oocytes (COC; Gomez et al. 2012 Zygote 20, 135–145). We investigated the effect of DO on cumulus expansion and nuclear maturation of COC in pigs during IVM using a defined medium. If the DO exert a positive influence on IVM, the defined medium can then be analysed for the presence of OSF. Immature COC were collected in the slaughterhouse from prepubertal gilts. To obtain DO, some COC were completely denuded by pipetting through a narrow-bore glass pipette. The COC used as a source for DO fulfilled the same morphological criteria as the COC used for IVM. The IVM medium was porcine oocyte medium (POM; Yoshioka et al. 2008 J. Reprod. Dev. 54, 208–213) with hormone supplementations applied only during the first 20 h of the IVM period. The COC were fixed to the bottom of 35-mm plastic Petri dishes in 3 × 3 grids by Cell-Tak (BD Bioscience, Bedford, MA, USA) in 100-µL droplets POM covered by paraffin oil. Culture droplets (each including 1 COC grid) were supplemented with (DO+ group, n = 179) or without 16 DO (DO– group, n = 143). After 20 h of IVM, the medium was replaced with a preincubated hormone-free POM and oocytes were cultured for an additional 28 h. At 0, 20, and 48 h of IVM, images of each grid were taken at the same magnification. The size of each COC was measured as a 2-dimensional area in pixels by analysing images with ImageJ software. Relative cumulus expansion was calculated at 20 and 48 h of IVM on the basis of the initial COC size at 0 h, which was assigned as 1. At 48 h of IVM, the COC were denuded and examined for oocyte maturation by orcein staining. The experiment was replicated 5 times. Cumulus expansion ratios at 20 and 48 h of IVM were compared between the DO+ and DO– groups by ANOVA. Maturation rates were compared between the DO+ and DO– groups by binary logistic regression. No difference in cumulus expansion between DO– and DO+ could be observed at 20 h (1.83 ± 0.04 and 1.75 ± 0.03, respectively) and 48 h (1.41 ± 0.03 and 1.47 ± 0.02, respectively) of IVM. Nuclear maturation rates of COC in DO– and DO+ groups did not differ significantly (39.0 ± 5.4 and 32.9 ± 8.8%, respectively). In conclusion, addition of DO to the defined IVM medium did not affect the cumulus expansion and oocyte maturation of follicular porcine COC. Further research is needed to assess the effects of DO during IVM on subsequent fertilization. If DO prove to be beneficial for fertilization, the nature of the OSF will be investigated.This study was supported by FCWO of UGent and by FWO-Flanders (grant number FWO11/ASP/276).


2007 ◽  
Vol 19 (1) ◽  
pp. 258
Author(s):  
B. Agung ◽  
T. Otoi ◽  
D. Fuchimoto ◽  
S. Senbon ◽  
A. Onishi ◽  
...  

When used as a solo maturation medium for oocytes, porcine follicular fluid (pFF) promoted male pronucleus formation (MPF) of oocytes after in vitro maturation (IVM), using a static system, and in vitro fertilization (IVF) in pigs (Naito et al. 1988 Gamete Res. 21, 289–295). However, the developmental competence of oocytes matured in pFF after IVM/IVF has not been reported. This study was conducted to assess the ability of pFF as a maturation medium to support IVM/IVF of porcine oocytes and their subsequent in vitro development. pFF, including cumulus–oocyte complexes (COCs), was aspirated from follicles (2–5 mm in diameter) of prepubertal crossbred gilt ovaries, and large clusters of follicular cells (FC) were removed from pFF by filtration through 212 �m of mesh. All of the COCs in filtered pFF were collected, and COCs with compact cumulus cells were selected for IVM. Also, small clusters of FC were collected by centrifugation of the filtered pFF, and pFF without any cells was prepared by centrifugation and used as a maturation medium (MpFF) after supplementation with FSH and antibiotics. COCs were transferred to 3.5 mL (in a 15-mL test tube) of MpFF with FC (5.2 � 106 cells mL-1) and cultured for 44–48 h at 38.5�C in 5% O2 and 5% CO2 using the rotating culture system. As a control group, COCs were cultured in 2 mL of MpFF without FC in a 35-mm Petri dish by the standard static culture system. After maturation, culture oocytes were co-incubated (IVF) for 5 h with frozen–thawed sperm in vitro, as reported previously (Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041), and then some of them were fixed 10 h after IVF to assess the fertilization status; the rest of them were cultured in PZM (Yoshioka et al. 2002 Biol. Reprod. 60, 112–119) for 7 days to assess their early embryonic development. All of the data were analyzed by ANOVA. Oocytes cultured with FC in the rotating system (R group) showed significantly higher sperm penetration (71.0%), MPF formation (70.5%), and normal fertilization (monospermic fertilization with female and male pronuclei; 31.5%) rates than those in the control group (56.0%, 56.9%, and 17.6%, respectively; P &lt; 0.05). Also, the R group showed significantly higher rates of 8-cell embryos at 2 days after IVF and blastocyst formation at 7 days after IVF than those of the control group (17.2% vs. 8.3% and 10.9% vs. 4.5%, respectively; P &lt; 0.05). These results indicate that porcine oocytes matured in pFF supplemented with FC using the rotating system have the ability to be penetrated by sperm and form MPF, and to develop to the blastocyst stage at higher rates, than oocytes cultured in the standard static maturation culture system. In conclusion, the pFF can be a sole and simple maturation culture medium useful for the in vitro production of blastocysts in pigs.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 741
Author(s):  
Dongjin Oh ◽  
Joohyeong Lee ◽  
Eunhye Kim ◽  
Seon-Ung Hwang ◽  
Junchul-David Yoon ◽  
...  

Interleukin-7 (IL-7) is a cytokine essential for cell development, proliferation and survival. However, its role in oocyte maturation is largely unknown. To investigate the effects of IL-7 on the in vitro maturation (IVM) of porcine oocytes, we analyzed nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, and subsequent embryonic developmental competence after parthenogenetic activation (PA) under several concentrations of IL-7. After IVM, IL-7 treated groups showed significantly higher nuclear maturation and significantly decreased intracellular ROS levels compared with the control group. All IL-7 treatment groups exhibited significantly increased intracellular GSH levels compared with the control group. All oocytes matured with IL-7 treatment during IVM exhibited significantly higher cleavage and blastocyst formation rates after PA than the non-treatment group. Furthermore, significantly higher mRNA expression levels of developmental-related genes (PCNA, Filia, and NPM2) and antioxidant-related genes (GSR and PRDX1) were observed in the IL-7-supplemented oocytes than in the control group. IL-7-supplemented cumulus cells showed significantly higher mRNA expression of the anti-apoptotic gene BCL2L1 and mitochondria-related genes (TFAM and NOX4), and lower transcript levels of the apoptosis related-gene, Caspase3, than the control group. Collectively, the present study suggests that IL-7 supplementation during porcine IVM improves oocyte maturation and the developmental potential of porcine embryos after PA.


2012 ◽  
Vol 24 (1) ◽  
pp. 207
Author(s):  
Y. Jeon ◽  
S.-S. Kwak ◽  
S.-A. Jeong ◽  
R. Salehi ◽  
Y. H. Seong ◽  
...  

Trans-ε-viniferin is a naturally occurring polyphenol belonging to the stilbenoids family. Trans-ε-viniferin is isolated from Vitis amurensis, 1 of the most common wild grapes in Korea, Japan and China. We investigated the effects of trans-ε-viniferin on in vitro maturation (IVM) and developmental competence after IVF or parthenogenesis (PA). At the laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Chungbuk National University, trans-ε-viniferin was purified from the leaves and stems of Vitis amurensis. Data were analyzed with SPSS 17.0 using Duncan's multiple range test. First, in total, 594 cumulus–oocyte complexes (COC) were used for the evaluation of nuclear maturation. The COC were matured in TCM-199 medium supplemented with various concentrations of trans-ε-viniferin (0, 0.1, 0.5, 1.0 and 5.0 μM) with 10% porcine follicular fluid, 10 IU mL–1 of eCG and 10 IU mL–1 of hCG. After 22 h in maturation culture, the COC were cultured in hormone-free medium supplemented with various concentrations of trans-ε-viniferin for an additional 22 h and then nuclear maturation was evaluated. Second, in total, 300 matured oocytes were used to examine the effects of different trans-ε-viniferin concentrations (0, 0.5 and 5.0 μM) on porcine oocyte intracellular glutathione (GSH) and reactive oxygen species (ROS) levels. Lastly, the developmental competence of oocytes matured with different concentrations of trans-ε-viniferin (0, 0.5 and 5.0 μM) was evaluated after IVF or PA. In total, 711 embryos were evaluated. As results, we observed that trans-ε-viniferin treatment during IVM did not improve the nuclear maturation of oocytes in any group (84.2, 86.6, 85.5, 83.3 and 79.2%, respectively), but significantly increased (P < 0.05) intracellular GSH levels in the 0.5 μM group (0 μM vs 0.5 μM; 14.6 vs 16.8 pmol oocyte–1) and reduced ROS levels (0 μM vs 0.5 μM and 50 μM; 174.6 vs 25.7 and 23.8 pixel oocyte–1). Oocytes treated with trans-ε-viniferin during IVM did not have significantly different cleavage rates or blastocyst formation rates after IVF, but total cell numbers were significantly higher (P < 0.05) in the 0.5 and 5.0 μM treatment groups (53.6 ± 4.0 and 47.9 ± 3.1) compared to the control group (36.4 ± 2.2). The PA embryos showed similar results; there were no significant differences in cleavage rates and blastocyst formation rates, but the total cell number significantly increased in the 0.5 and 5.0 μM treatment groups (59.6 ± 4.2 and 60.8 ± 4.6) compared to the control group (43.1 ± 2.1). In conclusion, these results indicate that trans-ε-viniferin treatment during porcine IVM increased total cell number of blastocysts, possibly through increasing intracellular GSH synthesis and reducing ROS levels. This work was supported by a grant from the Korea institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry & Fisheries, Republic of Korea.


Sign in / Sign up

Export Citation Format

Share Document