53 EFFECTS OF INSULIN-TRANSFERRIN-SELENIUM IN DEFINED AND PORCINE FOLLICULAR FLUID-SUPPLEMENTED MEDIUM ON IN VITRO PRODUCTION OF PORCINE SCNT EMBRYOS

2007 ◽  
Vol 19 (1) ◽  
pp. 144
Author(s):  
Y. U. Kim ◽  
D. P. Bhandari ◽  
M. S. Hossein ◽  
S. M. Park ◽  
E. Lee ◽  
...  

Insulin promotes the uptake of glucose and amino acids, and is beneficial for maturation of oocytes in vitro. Transferrin is an iron-transport protein and selenium is an essential trace element. Insulin-transferrin-selenium (ITS) together has been used in some in vitro maturation systems. The present study was designed to evaluate the effects of ITS in defined and porcine folicular fluid (pFF)-supplemented IVM medium on the glutathione (GSH) concentration, and on developmental competence after somatic cell nuclear transfer. ITS liquid media supplement (I-3146) was purchased from Sigma-Aldrich (St Louis, MO, USA). Basic IVM medium was TCM-199 supplemented with 10 ng mL-1 epidermal growth factor, 4 IU mL-1 pregnant mare serum gonadotropin (PMSG) and hCG and either 1% PVA (defined medium) or 10% pFF. Ten �g mL-1 insulin, 5.5 �g mL-1 transferrin, and 5 �g mL-1 selenium was used for the entire 44-h culture period. The GSH content of a gruop of 10 to 20 oocytes was determined by the dithionitrobezoic acid-glutathione disulfide (DTNB-GSSG) reductase recycling assay. Fetal fibroblasts were used as somatic cell donors and reconstructed embryos were cultured in mNCSU-23 medium for 168 h. Cleavage and blastocyst formation was observed at 48 h and 168 h, respectively. The quality of blastocysts was assessed by differential staining of the inner cell mass (ICM) and the trophectoderm (TE) cells. Each experiment was replicated for 5 times. The data were analyzed by one-way ANOVA, and Tukey was used as a posthoc test. The level of GSH production significantly varied in different culture conditions. The highest GSH concentration was observed in the pFF + ITS group (8.2 picomol/oocyte). A total of 116, 125, 126, and 120 reconstructed oocytes were cultured, and 10.1, 15.3, 17.2, and 21.8% blastocysts were observed for PVA, PVA + ITS, pFF, and pFF + ITS groups, respectively (P < 0.05). The numbers of inner cell mass, trophrectoderm cells, and total cells were significantly higher in the pFF + ITS group compared with the other groups. The average number of total cells in blastocysts was 31.9 � 1.8, 43.1 � 3.5, 46.7 � 4.9, and 52.3 � 6.7 for PVA, PVA + ITS, pFF, and pFF + ITS groups, respectively (P < 0.05). ITS supplement improved the developmental competence in both the defined and the pFF supplemented groups. We recommend supplementing porcine IVM medium with 10 �g mL-1 insulin, 5.5 �g mL-1 transferrin, and 5 �g mL-1 selenium.

2017 ◽  
Vol 29 (1) ◽  
pp. 182
Author(s):  
S. M. Bernal-Ulloa ◽  
A. Lucas-Hahn ◽  
P. Aldag ◽  
D. Herrmann ◽  
U. Baulain ◽  
...  

Oocyte culture in the presence of the nonspecific competitive phosphodiesterase inhibitor caffeine has been reported to increase developmental capacity of oocytes in different mammalian species. Here, we evaluated the effects of caffeine supplementation during the final phase of in vitro maturation (IVM) on developmental rates and blastocyst cell numbers. Bovine ovaries were collected from a local abattoir. A total of 1142 cumulus-oocyte-complexes were obtained by slicing. Cumulus-oocyte complexes were either in vitro matured for 24 h (Standard) or matured for 20 h followed by additional culture for 6 h in fresh IVM medium supplemented with 10 mM caffeine (Caffeine 6 h). In vitro fertilization was performed for 19 h using frozen-thawed sperm from 2 different bulls. After IVF, presumptive zygotes were cultured in vitro for 8 days until the blastocyst stage. Cleavage and blastocyst rates were evaluated 3 and 8 days after IVF, respectively. Expanded blastocysts from the different treatments were submitted to differential staining. SAS/STAT software (SAS Institute Inc., Cary, NC, USA) was used to evaluate cleavage and blastocyst rates using the Glimmix procedure and blastocyst cell numbers were compared using the linear model procedure. Cleavage rates were lower using caffeine for bull B and blastocyst production decreased for bull A. Caffeine treatment increased inner cell mass (ICM) number for bull B and decreased trophectoderm (TE) and total cell numbers for bull A. However, similar TE and total cells were obtained for bull B (Table 1; P < 0.05). Results show that developmental competence can be affected by caffeine supplementation at the final phase of IVM probably due to oocyte-sperm interaction changes. Table 1. In vitro developmental competence of oocytes cultured with caffeine at the end of IVM


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2483
Author(s):  
Pantu-Kumar Roy ◽  
Ahmad-Yar Qamar ◽  
Bereket-Molla Tanga ◽  
Seonggyu Bang ◽  
Gyeonghwan Seong ◽  
...  

Molecular approaches have been used to determine metabolic substrates involved in the early embryonic processes to provide adequate culture conditions. To investigate the effect of modified Spirulina maxima pectin nanoparticles (MSmPNPs) on oocyte developmental competence, cumulus–oocyte complexes (COCs) retrieved from pig slaughterhouse ovaries were subjected to various concentrations of MSmPNPs (0, 2.5, 5.0, and 10 µg/mL) during in vitro maturation (IVM). In comparison to the control, MSmPNPs-5.0, and MSmPNPs-10 groups, oocytes treated with 2.5 µg/mL MSmPNPs had significantly increased glutathione (GSH) levels and lower levels of reactive oxygen species (ROS). Following parthenogenetic activation, the MSmPNPs-2.5 group had a considerably higher maturation and cleavage rates, blastocyst development, total cell number, and ratio of inner cell mass/trophectoderm (ICM:TE) cells, when compared with those in the control and all other treated groups. Furthermore, similar findings were reported for the developmental competence of somatic cell nuclear transfer (SCNT)-derived embryos. Additionally, the relative quantification of POU5F1, DPPA2, and NDP52 mRNA transcript levels were significantly higher in the MSmPNPs-2.5 group than in the control and other treated groups. Taken together, the current findings suggest that MSmPNP treatment alleviates oxidative stress and enhances the developmental competence of porcine in vitro matured oocytes after parthenogenetic activation and SCNT.


2004 ◽  
Vol 16 (2) ◽  
pp. 264
Author(s):  
K. Yoshioka ◽  
H. Ekwall ◽  
H. Rodriguez-Martinez

Hyaluronan (HA), a glycosaminoglycan present in follicular and oviductal fluids, has been related to sperm capacitation, fertilization and embryo development. We have previously developed an in vitro-production (IVP) system of porcine embryos, where porcine blastocysts can be produced by IVF and IVC in chemically defined media and can develop to full-term by transfer to recipients. The application of a chemically defined medium to IVP in pigs allows the analysis of the physical action of substances on the development of pre-implantation embryos. In the present study, the effects of HA on the development of porcine embryos in a chemically defined medium were investigated. Porcine presumptive zygotes were produced by IVM and IVF of COC from pre-pubertal gilts and frozen-thawed ejaculated boar semen. The zygotes were cultured in Porcine Zygote Medium (PZM)-5 containing different concentrations of HA (0 [control], 1, 2, 5, 10, 20 and 50μgmL−1) until 6 days after IVF, and representative specimens were fixed for cell counting and transmission electron microscopy. Data of percentages and cell numbers were statistically analyzed by one-way ANOVA and Fisher’s PLSD test. The percentage of embryos that developed to the blastocyst stage (15.8% [23/144] to 19.5% [27/139]) did not differ among treatments. However, addition of 5 or 10μgmL−1 HA increased (P&lt;0.05) the total number of cells in blastocysts (56.1 and 58.3 cells [n=22 and 23], respectively) compared to control (no HA, 42.0 cells [n=23]). To evaluate proliferation rates of inner cell mass (ICM) and trophectoderm (TE), embryos were cultured in PZM-5 for various periods of exposure to 10μgmL−1 HA. The numbers of ICM and TE cells in Day-6 blastocysts cultured in the presence of exogenous HA from Day 0 to Day 3 (18.3 and 34.4 cells, respectively [n=38]) or Day 6 (17.9 and 35.9 cells, respectively [n=36]) were significantly (P&lt;0.05) higher than those cultured without HA through the culture period (13.5 and 24.2 cells, respectively [n=26]). In the presence of HA from Day 3 to 6, only the number of TE cells (37.1 cells [n=33]) increased (P&lt;0.05), compared to PZM-5 alone. Differences in ultrastructure were noticed among blastocysts cultured with or without 10mgmL−1 HA. Blastocysts cultured with HA had mainly mature mitochondria while many mitochondria appeared morphologically immature in the blastocysts cultured without HA. Lipid droplets in the blastocysts cultured with HA seemed to be more homogeneous in comparison with those in the blastocysts cultured in PZM-5 alone. Further differences were seen in the numbers of lysosome-like structures, which were greater in blastocysts cultured with HA. This study demonstrates that exogenous HA improves cell proliferation and normality of ICM and TE in porcine embryos cultured in a chemically defined medium, depending on the exposure periods to HA. (Supported by MAFF, Japan and STINT, Sweden.)


Development ◽  
1988 ◽  
Vol 102 (4) ◽  
pp. 793-803 ◽  
Author(s):  
V.E. Papaioannou ◽  
K.M. Ebert

Total cell number as well as differential cell numbers representing the inner cell mass (ICM) and trophectoderm were determined by a differential staining technique for preimplantation pig embryos recovered between 5 and 8 days after the onset of oestrus. Total cell number increased rapidly over this time span and significant effects were found between embryos of the same chronological age from different females. Inner cells could be detected in some but not all embryos of 12–16 cells. The proportion of inner cells was low in morulae but increased during differentiation of ICM and trophectoderm in early blastocysts. The proportion of ICM cells then decreased as blastocysts expanded and hatched. Some embryos were cultured in vitro and others were transferred to the oviducts of immature mice as a surrogate in vivo environment and assessed for morphology and cell number after several days. Although total cell number did not reach in vivo levels, morphological development and cell number increase was sustained better in the immature mice than in vitro. The proportion of ICM cells in blastocysts formed in vitro was in the normal range.


Reproduction ◽  
2021 ◽  
Vol 161 (4) ◽  
pp. 353-363
Author(s):  
Mun-Hyeong Lee ◽  
Pil-Soo Jeong ◽  
Bo-Woong Sim ◽  
Hyo-Gu Kang ◽  
Min Ju Kim ◽  
...  

In the mammalian female reproductive tract, physiological oxygen tension is lower than that of the atmosphere. Therefore, to mimic in vivo conditions during in vitro culture (IVC) of mammalian early embryos, 5% oxygen has been extensively used instead of 20%. However, the potential effect of hypoxia on the yield of early embryos with high developmental competence remains unknown or controversial, especially in pigs. In the present study, we examined the effects of low oxygen tension under different oxygen tension levels on early developmental competence of parthenogenetically activated (PA) and in vitro-fertilized (IVF) porcine embryos. Unlike the 5% and 20% oxygen groups, exposure of PA embryos to 1% oxygen tension, especially in early-phase IVC (0–2 days), greatly decreased several developmental competence parameters including blastocyst formation rate, blastocyst size, total cell number, inner cell mass (ICM) to trophectoderm (TE) ratio, and cellular survival rate. In contrast, 1% oxygen tension did not affect developmental parameters during the middle (2–4 days) and late phases (4–6 days) of IVC. Interestingly, induction of autophagy by rapamycin treatment markedly restored the developmental parameters of PA and IVF embryos cultured with 1% oxygen tension during early-phase IVC, to meet the levels of the other groups. Together, these results suggest that the early development of porcine embryos depends on crosstalk between oxygen tension and autophagy. Future studies of this relationship should explore the developmental events governing early embryonic development to produce embryos with high developmental competence in vitro.


2006 ◽  
Vol 18 (2) ◽  
pp. 197 ◽  
Author(s):  
B. S. Song ◽  
J. S. Kim ◽  
D. B. Koo ◽  
J. S. Park ◽  
K. K. Lee ◽  
...  

The microenvironment of the follopian tube, in which the oviductal fluid contains a variety of cytokines and growth factors, affects pre-implantation development of fertilized embryos in mammals. Prostaglandin I2 (PGI2, prostacyclin) exists in oviductal fluid and is synthesized from arachidonic acid by prostacyclin synthetase. PGI2 also enhances the implantation rate of mouse embryos. In this study, the effect of PGI2 analog on the development of bovine embryos was examined. Bovine cumulus oocytes complexes (COCs) were matured in TCM-199 medium supplemented with 10 IU/mL pregnant mare serum gonadotropin (PMSG), 10 IU/mL hCG, and 10 ng/mL epidermal growth factor (EGF) at 39�C, 5% CO2 in air for 20-22 h. Following in vitro maturation, COCs were fertilized in Fert-TALP medium containing 0.6% BSA using frozen semen. Also, oocytes matured in vitro were enucleated, individually reconstructed with bESF cells, fused, and then activated by treatment with 5 �M ionomycin for 5 min and 2 mM 6-DMAP for 4 h. In vitro-fertilized (IVF) and nuclear-transferred (NT) eggs were cultured in 50 ��L drops of CR1-aa medium supplemented with 0.3% BSA in the absence or presence of 1 �M PGI2 analog at 39�C, 5% CO2 in air, respectively. At 3 days of culture, cleaved embryos were further cultured in the same culture media supplemented with 10% FBS for 4 days. Allocations of blastocysts to inner cell mass (ICM) and trophoblast (TE) cells were investigated to assess embryo quality. All experiments were repeated more than three times. All data were analyzed by using the Duncan test of ANOVA by the Statistical Analysis System (SAS Institute, Inc., Cary, NC, USA) and numbers of nuclei in blastocysts were expressed as mean � SE. No difference was detected in the cleaved rate of the eggs between the treated- and nontreated groups. IVF zygotes treated with PGI2 analog represented a higher developmental rate (33%, 122/418) to the blastocyst stage than nontreated controls (24%, 107/456) (P < 0.05). Among IVF-derived blastocysts, interestingly, the proportion (46%, 84/181) of expanded blastocysts was significantly higher in the PGI2 analog-treated group compared with that in the nontreated group (28%, 46/164). The number of nuclei in (165 � 6.1, n = 15) in blastocysts in the PGI2 analog-treated group was higher than that (146.12 � 5.7, n = 18) in the nontreated group (P < 0.05). No difference was detected in the ratio of ICM to total cells between PGI2 analog-treated (42.0 � 3.0%) and nontreated groups (41.9 � 2.9%). Like the IVF embryos, NT embryos in the PGI2 analog-treated group showed a higher in vitro developmental rate (33.6%, 43/128) than the nontreated embryos (24.2%, 32/132) (P < 0.05). Our results indicate that PGI2 analog improves the kinetics of embryo development in cattle.


2019 ◽  
Vol 31 (12) ◽  
pp. 1758 ◽  
Author(s):  
Elaine M. Carnevale ◽  
Elizabeth S. Metcalf

Intracytoplasmic sperm injection (ICSI) is used to produce equine embryos invitro. The speed of embryo development invitro is roughly equivalent to what has been described for embryos produced invivo. Morphological evaluations of ICSI-produced embryos are complicated by the presence of debris and the dark nature of equine embryo cytoplasm. Morulas and early blastocysts produced invitro appear similar to those produced invivo. However, with expansion of the blastocyst, distinct differences are observed compared with uterine embryos. In culture, embryos do not undergo full expansion and thinning of the zona pellucida (ZP) or capsule formation. Cells of the inner cell mass (ICM) are dispersed, in contrast with the differentiated trophoblast and ICM observed in embryos collected from uteri. As blastocysts expand invitro, embryo cells often escape the ZP as organised or disorganised extrusions of cells, probably through the hole incurred during ICSI. Quality assessment of invitro-produced early stage equine embryos is in its infancy, because limited information is available regarding the relationship between morphology and developmental competence. Early embryo development invivo is reviewed in this paper, with comparisons made to embryo development invitro and clinical assessments from a laboratory performing commercial ICSI for &gt;15 years.


2015 ◽  
Vol 27 (3) ◽  
pp. 544 ◽  
Author(s):  
H. S. Pedersen ◽  
Y. Liu ◽  
R. Li ◽  
S. Purup ◽  
P. Løvendahl ◽  
...  

Pig oocytes have been used increasingly for in vitro production techniques in recent years. The slaughterhouse-derived oocytes that are often used are mostly of prepubertal origin. The aims of the present study were to compare the developmental competence between pre- and postpubertal pig oocytes, and to develop a simple and practical method for the selection of prepubertal pig oocytes for parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) based on oocyte morphology after IVM and oocyte inside zona pellucida (ZP) diameter (‘small’ ≤110 µm; ‘medium’ >110 µm; ‘large’ ≥120 µm). Meiotic competence and blastocyst rates after PA and SCNT of prepubertal oocytes increased with oocyte size, with the large prepubertal oocytes reaching a level similar to postpubertal oocytes after SCNT. Blastocyst cell number was not related to oocyte inside ZP diameter and oocyte donor to the same extent as blastocyst rate. Very low blastocyst rates were obtained after PA of morphologically bad pre- and postpubertal oocytes. In conclusion, measurement of inside ZP diameter combined with morphological selection is useful to remove incompetent oocytes. Further studies are needed to clarify the relative importance of cytoplasmic volume and stage in oocyte growth phase.


2004 ◽  
Vol 16 (2) ◽  
pp. 144
Author(s):  
P. Kasinathan ◽  
M.F. Nichols ◽  
J.E. Griffin ◽  
J.M. Robl

Chimeras have been used for investigating fundamental aspects of early embryonic development, and differentiation, and for introducing foreign genes into mammals (Robertson et al., 1986 Nature 323, 445–448; Cibelli et al., 1998 Science 280, 1256–1258). The main objective of this study was to determine if the transfer of blastomeres from in vitro-produced (IVP) embryos into cloned, transchromosomic embryos improved the efficiency of producing transchromosomic calves. Cloned embryos were produced using in vitro-matured bovine oocytes and bovine fetal fibroblasts containing a human artificial chromosome (HAC) (Kuroiwa et al., 2002 Nat Biotechnol 20, 889–894). IVP embryos were produced using standard procedures and blastomeres were harvested at the 8–16 cell stage by removing the zona pellucida with protease. Cloned embryos were randomly divided on Day 4 into two groups. One group received 3–4 IVP blastomeres while a second group served as a control (nonmanipulated cloned embryos). After transferring the blastomeres, the chimeric and cloned embryos were placed in culture (Kasinathan et al., 2001 Biol. Reprod. 64, 1487–1493) and on Day 7 development to the blastocyst stage was evaluated. Grades 1 and 2 embryos were transferred; two each per synchronized recipient. Pregnancy maintenance, calving, and calf survival were evaluated in both groups. Presence of a HAC in live calves was evaluated in both fibroblasts and peripheral blood lymphocytes (PBLs) using FISH analysis. Embryo development to the blastocyst stage, maintenance of pregnancy and number of calves born were analyzed using Chi-square. There were no differences in the rate of blastocyst development at day 7 or establishment of pregnancy at 40d (P&gt;0.05). However, pregnancy rate at 120d, and number of calves that developed to term and were alive at birth (chimera 14/54 and clone 4/90), and at 1 month of age (chimera 13/54 and clone 1/90) were lower (P&lt;0.01) for cloned embryos. The proportion of cells containing an HAC in PBLs, was higher in cloned calves (100%) compared to chimeric calves (26%). The HAC retension rates in PBLs in HAC-positive chimeric and cloned calves were 84% and 95%, respectively. These data indicate that, although the proportion of calves retaining an HAC was lower in chimeras compared to clones, more HAC-positive calves were produced in the chimeric treatment from fewer cloned embryos. We speculate that higher rates of development in the chimeras may be related to the normality of the placenta. Future studies will be required to determine the contribution of the IVP blastomeres to both the inner cell mass and trophectoderm. Therefore, a chimeric approach may be useful for improving the efficiency of producing cloned transchromosomic calves.


2011 ◽  
Vol 23 (1) ◽  
pp. 135
Author(s):  
S. K. Panda ◽  
A. George ◽  
A. P. Saha ◽  
R. Sharma ◽  
N. M. Kamble ◽  
...  

Despite recent successes in the birth of buffalo calves cloned through SCNT or hand-guided cloning (HGC), the cloning efficiency is very low in this species because of lack of information on factors that influence it. The goal of this study was to examine the effects of cytoplasmic volume on the developmental competence of cloned buffalo embryos produced by HGC. In vitro matured oocytes were stripped of their cumulus investment and zona pellucida using hyaluronidase and pronase, respectively. Protrusion cone-guided bisection of zona-free oocytes was performed to remove the nucleus. For reconstructing control HGC embryos, 2 enucleated oocytes (demi-cytoplasts) were fused with a single somatic cell. For reconstruction of embryos with lower or higher cytoplasmic volume, 1 or 3 demi-cytoplasts were fused, respectively, with the donor somatic cell. 2 different cell types, i.e. buffalo fetal fibroblasts (BFF) between passage 10 and 15 and buffalo embryonic stem cell (ESC)-like cells between passage 22 and 25 were used as nuclear donors in 2 different experiments. Data were analysed by 1-way ANOVA after arcsine transformation of percentage values. For BFF, the blastocyst rate for doublet and triplet embryos were significantly higher (P ≤ 0.01) than that for singlet embryos despite the cleavage rate for the 3 groups being similar. For the ESC-like cells, the cleavage and the blastocyst rate were significantly lower (P ≤ 0.01) for the singlet than that for the doublet embryos. The pregnancies were established only in doublet and triplet embryo groups using BFF cells and in the doublet embryo group using ESC-like cells. These results indicate that increasing the cytoplasmic volume could be helpful in improving cloning efficiency in terms of blastocyst production rate in buffaloes. Table 1.Effect of cytoplasmic volume on the developmental competence of cloned buffalo embryos This work was funded by NAIP grant C 2-1-(5)/2007 to SKS.


Sign in / Sign up

Export Citation Format

Share Document