208 TIME LAPSE CINEMATOGRAPHIC ANALYSIS OF CLEAVAGE AND BLASTULATION IN BOVINE EMBRYOS OBTAINED BY OVUM PICKUP AND IN VITRO FERTILIZATION

2009 ◽  
Vol 21 (1) ◽  
pp. 202
Author(s):  
K. Imai ◽  
T. Somfai ◽  
Y. Inaba ◽  
Y. Aikawa ◽  
M. Ohtake ◽  
...  

Since the 1980s, several different bovine in vitro embryo production systems have been developed, and more than 291 000 embryos have been transferred throughout the world (Thibier M 2007 IETS Newsletter 25(4), 15–20). However, we have limited knowledge about the cleavage pattern of the first, second, and third cell divisions and the developmental activities of embryos during in vitro culture (IVC). The present study was conducted to determine the developmental activities of bovine embryos obtained by ovum pickup (OPU), in vitro maturation (IVM), and in vitro fertilization (IVF). We analyzed embryonic development by time-lapse cinematography (TLC). A total of 92 cumulus–oocyte complexes were collected by OPU from Japanese Black cows and were subjected to IVM and IVF as reported previously (Imai et al. 2006 J. Reprod. Dev. 52(Suppl.), S19–S29). Inseminated oocytes were cultured in microdrops of CR1aa medium supplemented with 5% calf serum covered by mineral oil in 5% CO2 in air at 38.5°C. Kinetics of embryo development were measured by TLC for 168 h after IVF by using a Cultured Cell Monitoring System (CCM–M1.4ZS, Astec, Fukuoka, Japan). A total of 672 photographs of the embryos were taken (1 photograph every 15 min) during IVC. Image stacks were analyzed by the CCM–M1.4 software. Timing of the first, second, and third cell divisions, blastulation, and embryonic contractions were recorded. The results are reported as time (h) passed after insemination. In total, 75 (81.5%) embryos cleaved and 61 (66.3%) embryos developed to the blastocyst stage. The first, second, and third cell divisions in these viable embryos occurred at 24.0 ± 0.5, 32.1 ± 0.2, and 39.4 ± 0.4 h (mean ± SE) after IVF, respectively. On the other hand, in nonviable embryos (those that failed to develop to the blastocyst stage; n = 14), these cell divisions occurred at 29.5 ± 2.2, 41.3 ± 3.3, and 57.2 ± 7.6 h after IVF, respectively. There tended to be a difference (P = 0.06; paired t-test) in the timing of the first cell division between viable and nonviable embryos. Blastulation of embryos began at 114.4 ± 1.1 h, embryos developed to the blastocyst stage at 127.3 ± 1.4 h, and blastocysts began to expand at 138.4 ± 1.7 h after IVF, respectively. During blastocyst development, embryonic contractions (shrinkage attributable to the rupture of the blastocoele) and tight-shrinkage (shrinking of the embryo to less than 70% of its surface area) were observed in all embryos. The mean numbers of contractions and tight-shrinkages in blastocysts were 5.3 ± 2.7 and 2.1 ± 1.0 times, respectively. The frequency of contractions from the beginning of blastulation to the blastocyst stage was significantly lower (P < 0.01) than after the blastocyst stage. It took 6.9 ± 4.6 h for the embryos to re-expand after the tight-shrinkages. These results indicate that viable in vitro-produced embryos can be selected at early stages by TLC. Further studies are necessary to clarify the importance of the pulsating activity in OPU–IVF embryos. This work was supported by the Research and Development Program for New Bio-industry Initiatives.

2015 ◽  
Vol 27 (1) ◽  
pp. 208
Author(s):  
S. Matoba ◽  
T. Somfai ◽  
T. Nagai ◽  
M. Geshi

Previously, an early first cleavage and a second cleavage after IVF with a normal cleavage pattern defined by even blastomeres without fragments or protrusions was found to be a potent marker for the selection of embryos with high developmental competence (Sugimura et al. 2012 PLoS ONE 7, e36627). The aim of this study was to investigate the effects of bulls and X-sorting of sperm on the ability of these simple noninvasive markers to predict the potency of bovine IVF embryos to develop to the blastocyst stage in vitro. Immature oocytes were matured in TCM199 supplemented with 0.02 armour unit mL–1 FSH and 5% calf serum at 38.5°C in 5% CO2 and 95% air for 22 to 23 h. After maturation, oocytes were inseminated with either of non-sorted frozen-thawed sperm from 3 bulls (A–C) or X-sorted sperm of bull A. Putative zygotes were cultured (IVC) in CR1aa medium supplemented with 5% calf serum and 0.25 mg mL–1 linoleic acid albumin at 38.5°C in 5% CO2, 5% O2, and 90% N2 for 216 h. Embryo kinetics were observed individually by time-lapse cinematography (CCM-1.3Z; Astec, Fukuoka, Japan; Sugimura et al. 2010 Biol. Reprod. 83, 970–978). First and second cleavage kinetics and pattern were categorized according to Sugimura et al. (2012). For each bull, blastocyst development from embryos possessing the following 3 selection markers was compared: (marker 1) the first cleavage within 28 h after IVF, (marker 2) marker 1 combined with 2 even blastomeres without fragments or protrusions, and (marker 3) marker 2 combined with the second cleavage within 50 h after IVF with ≥6 even blastomeres without fragments or protrusions, respectively. Data were analysed by the Yates' corrected chi-square test. A total of 823 oocytes were used in at least 3 replications. When non-sorted sperm was used for IVF, there was not difference (P > 0.05) in total blastocyst formation rates on Day 8 (Day 0 = IVF) among bulls (ranging between 49.5 and 60.8%); however, blastocyst formation rate of embryos generated from X-sorted sperm of bull A (39.5%) was lower (P < 0.05) compared with other groups despite of similar cleavage rates. Embryos having marker 3 criteria developed to the blastocysts stage at significantly higher rates than those having marker 1 criteria in case of non-sorted sperm of bulls A, B, C, and X-sorted sperm of bull A (75.9, 87.0, 90.0, and 75.0% v. 59.5, 62.2, 63.6, and 46.3%, respectively). In groups produced from non-sorted sperm of bulls A, B, C, and X-sorted sperm of bull A, blastocyst development rates of embryos with marker 2 criteria (73.7, 75.0, 90.0, and 65.8%, respectively) were higher (P < 0.05) than those of embryos having marker 1 criteria but did not differ significantly from those with marker 3 criteria. Our results reveal that a first cleavage within 28 h after IVF to 2 even blastomeres without fragments or protrusions are potent predictive markers of the developmental competence of bovine embryos to the blastocyst stage regardless of bulls and sperm sorting.Research was partly supported by JSPS KAKENHI (26450388).


2012 ◽  
Vol 24 (1) ◽  
pp. 191
Author(s):  
K. Imai ◽  
S. Sugimura ◽  
T. Somfai ◽  
Y. Inaba ◽  
Y. Aikawa ◽  
...  

More than 300 000 embryos have been transferred all over the world (Stroud 2010 IETS Newsl. 27(4), 11–21). We have reported that embryos that showed the abnormal cleavage pattern at the first cell division can develop to the blastocyst stage (Somfai et al. 2010 J. Reprod. Dev. 56, 200–207). However, we have limited knowledge about the consequences of the pattern of first embryonic cleavage on their post-transfer developmental competence. The present study was conducted to determine the developmental competence of bovine blastocysts showing different cleavage patterns at their first cell division. Cumulus–oocyte complexes were collected by ovum pickup from Japanese Black cows and were subjected to in vitro maturation and IVF as reported previously (Imai et al. 2006 J. Reprod. Dev. 52, S19–S29 suppl). Inseminated oocytes were cultured in CR1aa medium supplemented with 5% calf serum covered by mineral oil at 38.5°C in 5% CO2 in air with micro-droplets or 5% CO2, 5% O2 and 90% N2. The kinetics of embryo development were analysed by time-lapse cinematography for 168 h after IVF by using a Cultured Cell Monitoring System (CCM-M1.4ZS, Astec, Fukuoka, Japan). A total of 673 photographs of each embryo were taken (1 photograph in every 15 min) during in vitro culture. Image stacks were analysed by the CCM-M1.4 software. Embryos were classified in 5 groups according to the pattern of first cleavage as normal cleavage (NC), direct cleavage from 1 cell to 3 to 4 blastomeres (3–4BL), unequal blastomeres (UB), multiple fragments (MF) and protrusion formation (PT). Blastocysts developing from each group were transferred into the ipsilateral uterine horn of each synchronized recipient on Day 7 or 8 after oestrus. Data on conception at Day 60, abortion and delivery were then recorded. Data were analysed by chi-square test and Student's t-test. In total, 43 embryos were transferred, 17 conceptions (39.5%) were established and 16 recipients (94.1%) were delivered. Only 1 abortion was detected at Day 223 in the NC group. The highest conception rate was observed in the NC group (55%, n = 20) and the 3–4BL (n = 12), UB (n = 6) and PT (n = 3) groups showed similar conception rates of 33.3% (1 implanted embryo belonged to 2 classes in UB and PT) and none of the embryos derived from the MF group (n = 3) could cause conception. There was a significant difference (P < 0.05) in conception rates between the NC group and totals of each of the other cleavage groups. No significant difference was found in gestation lengths and birth weights between the NC group (282.2 ± 4.4 days, 30.6 ± 3.8 kg, respectively) and totals of each of the other cleavage groups (282.8 ± 5.3 days, 30.3 ± 1.9 kg, respectively). These results indicate that embryos showing abnormal cleavage patterns at first cell division can develop to normal calves with normal gestation lengths and birth weights; however, their post-transfer viability is lower than for NC embryos. This work was supported by the Research and Development Program for New Bio-industry Initiatives.


2019 ◽  
Vol 31 (12) ◽  
pp. 1862 ◽  
Author(s):  
N. A. Martino ◽  
G. Marzano ◽  
A. Mastrorocco ◽  
G. M. Lacalandra ◽  
L. Vincenti ◽  
...  

Time-lapse imaging was used to establish the morphokinetics of equine embryo development to the blastocyst stage after invitro oocyte maturation (IVM), intracytoplasmic sperm injection (ICSI) and embryo culture, in oocytes held overnight at room temperature (22–27°C; standard conditions) before IVM. Embryos that developed to the blastocyst stage underwent precleavage cytoplasmic extrusion and cleavage to the 2-, 3- and 4-cell stages significantly earlier than did embryos that arrested in development. We then determined the rate of blastocyst formation after ICSI in oocytes held for 2 days at either 15°C or room temperature before IVM (15-2d and RT-2d treatment groups respectively). The blastocyst development rate was significantly higher in the 15-2d than in the RT-2d group (13% vs 0% respectively). The failure of blastocyst development in the RT-2d group precluded comparison of morphokinetics of blastocyst development between treatments. In any condition examined, development to the blastocyst stage was characterised by earlier cytoplasmic extrusion before cleavage, earlier cleavage to 2- and 4-cell stages and reduced duration at the 2-cell stage compared with non-competent embryos. In conclusion, this study presents morphokinetic parameters predictive of embryo development invitro to the blastocyst stage after ICSI in the horse. We conclude that time-lapse imaging allows increased precision for evaluating effects of different treatments on equine embryo development.


Sign in / Sign up

Export Citation Format

Share Document