29 PRODUCTION OF BOVINE CLONED EMBRYOS BY NUCLEAR TRANSFER USING VITRIFIED IMMATURE OOCYTES AS RECIPIENT CYTOPLASTS

2009 ◽  
Vol 21 (1) ◽  
pp. 115
Author(s):  
F. Forell ◽  
C. Feltrin ◽  
L. C. Santos ◽  
A. D. Vieira ◽  
U. M. Costa ◽  
...  

The cryopreservation of immature oocytes is a logistic alternative to make cytoplasts available throughout the year for cloning by somatic cell nuclear transfer (SCNT). Oocyte cryopreservation will help to overcome hurdles related to oocyte availability, seasonality, or sanitary constraints. The objective of this experiment was to determine the efficiency of vitrification of bovine immature oocytes for use as cytoplasts to produce clone embryos. Cumulus–oocyte complexes (COCs) obtained from bovine ovaries by slicing from a local abattoir were selected and vitrified prior to maturation. Vitrification and warming solutions and exposure times were as previously described (Vieira AD et al. 2008 Rep. Dom. Anim. 43, 314–318) with minor modifications. Groups of 15 COCs were loaded in a 5-μL vitrification solution microdrop in beveled-cut straws (0.5 mL), which were plunged into N2L. Following warming, vitrified and control (non-vitrified) oocytes were in vitro-matured for 22 h and 17 h, respectively (Oliveira ATD et al. 2005 Theriogenology 64, 1559–1572). After maturation, cumulus cells were removed and oocytes were selected by the presence of a polar body. Embryo reconstruction by SCNT, carried out by standard micromanipulation procedures using fibroblast cells from adult origin, and in vitro culture to the blastocyst stage (Day 7) were based on our established procedures (Forell F et al. 2008 Acta Sci. Vet. 36, 141–148). Data regarding oocyte recovery following cumulus cell removal, oocyte survival after micromanipulation, and maturation, fusion, cleavage (Day 2), and blastocyst (Day 7) rates were analyzed by the chi-square test. Oocyte recovery (73.0%, n = 558/764 v. 91.4%, n = 529/579), maturation (46.8%, n = 261/558 v. 65.8%, n = 348/529) and cleavage (47.2%, n = 60/127 v. 60.2%, n = 77/128) rates were lower in the vitrified than in the non-vitrified group, respectively (P < 0.05). Conversely, oocyte survival after micromanipulation (77.8% and 78.4%) and fusion (82.1% and 82.3%) and blastocyst (16.7%, 10/60 v. 23.4%, n = 18/77) rates were similar between vitrified and non-vitrified groups. However, the overall efficiency (blastocysts produced from selected COCs) was 3.4-fold lower for vitrified oocytes than controls. In conclusion, the vitrification of immature bovine oocytes was proven as a valuable procedure for the production of blastocysts by SCNT, providing that a strict selection is made following warming, being an alternative resource either for the use of large numbers of oocytes obtained from slaughterhouse ovaries or to overcome seasonal variations in oocyte supply for use in animal cloning. This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq).

2007 ◽  
Vol 19 (1) ◽  
pp. 163
Author(s):  
N. T. Uoc ◽  
F. de Rennis ◽  
N. H. Duc ◽  
L. C. Bui ◽  
N. V. Hanh ◽  
...  

Reproductive activity in swamp buffalo is characterized by a clearly demonstrated anestrus season. The aim of the present study was to evaluate season effect on the oocyte collection, in vitro maturation, and somatic cell nuclear transfer. The ovaries collected from a slaughterhouse were divided into 3 groups according to the collection period: (1) G1: from January to April; G2: from May to August, which is characterized by higher climate temperature and low reproductive activity; and G3: from September to December. Cumulus–oocyte complexes (COCs) were aspirated from follicles 2-6 mm in diameter using an 18-gauge needle, washed in HEPES-buffered TCM-199 (Sigma-Aldrich, St Louis, MO, USA), and classified following 3 different quality levels: A (with 4–6 layers of cumulus cells), B (with 2–3 layers of cumulus cells), and C (few or without cumulus cells). The oocytes of A and B categories were used for IVM in maturation media currently used in cattle (TCM-199 medium + 10% fetal bovine serum) with an increase of FSH concentration (30 �g mL-1) and estradiol-17β (3 �g mL-1). Maturation was carried out at 39�C in a water-saturated incubator, under 5% CO2 for 22 h. The oocytes were observed for the cumulus expanding and the presence of polar body (PB). The oocytes with PB were used for further enucleation and cell nuclear transfer using buffalo quiescent fibroblast cells and the technique described previously (Nguyen et al. 2000 Theriogenology 53, 235). The percentages of intact and fused oocytes as well as reconstructed embryos developed to blastocyst stage were compared for the oocytes from G1 and G2. The results indicated that the average number of good quality COCs collected per ovary for the G1, G2, and G3 period were 6.00 � 4.08 (n = 426), 2.93 � 2.55 (n = 346), and 4.78 � 1.05 (n = 445), respectively. The percentages of A and B oocytes were 62.4% (1.58 � 0.51 vs. 2.17 � 1.54), 63.2% (0.90 � 0.32 vs. 0.95 � 0.50), and 54.7% (1.12 � 0.25 vs. 1.49 � 0.53), respectively; the maturation rate was 55.08%, 56.28%, and 52.16%, respectively. There were no significant differences between G1 and G2 in the percentage of intact and fused oocytes (93.7% and 59% for G1; 100% and 60% for G2, respectively), but the rate of embryos developed to blastocyst stage was higher for oocytes from G1 (18.5% vs. 10.2%). In conclusion, in swamp buffalo, the hot season affected significantly the number of oocytes collected per animal and the subsequent results of somatic cell nuclear transfer. The optimal period for working with buffalo oocyte is from January to April. This work was aupported by a grant from the Vietnam-Italy 3AB3 Project.


2006 ◽  
Vol 18 (2) ◽  
pp. 249 ◽  
Author(s):  
N. Maedomari ◽  
N. Kashiwazaki ◽  
M. Ozawa ◽  
A. Takizawa ◽  
J. Noguchi ◽  
...  

It is generally accepted that cumulus cells (CCs) support the nuclear maturation of immature oocytes in mammals. However, the precise mechanism of interaction between cumulus cells and oocytes has not been clarified. Furthermore, the role of cumulus cells in embryonic development has not been reported. In the present study, the effect of denuding cumulus cells from porcine oocytes on oocyte maturation, ertilization, and their subsequent development to the blastocyst stage was examined in vitro. In vitro maturation, fertilization, and culture were carried out as previously reported (Kikuchi et al. 2002 Biol. Reprod. 66, 1033-1041). Porcine cumulus-oocyte complexes (COCs) were collected; some of them were completely denuded of cumulus cells immediately after the collection (DO-0 group). The remaining intact COCs and the DO-0 oocytes were cultured for 24 h in the presence of dbcAMP and hormones. After the initial culture, some of the intact COCs were denuded either completely (DO-24 group) or partially (H-DO-24 group). Additionally, some of DO-24 oocytes were co-cultured with the cumulus cells removed at 0 h and pre-cultured for 24 h (DO-24 + CCs group). The denuded oocytes in each experimental group and intact COCs (control) were further cultured for total 46 h. The remaining oocytes with a first polar body were either examined for the levels of intracellular glutathione (GSH) or fertilized in vitro with frozen-thawed boar spermatozoa. The inseminated oocytes were cultured and examined for their fertilization status after 10 h and for their developmental competence after 6 days. Data were analyzed by ANOVA, followed by the Duncan's multiple range tests. The maturation rates of all denuded groups were significantly lower (P < 0.05; 34.3 to 45.0%) than that of the control group (64.5%). Intracellular GSH concentrations of all denuded groups were also significantly lower (P < 0.05; 4.03 to 7.00 pmol/oocyte) than that of the control group (9.60 pmol/oocyte); however, the GSH level of H-DO-24 oocytes was significantly higher (P < 0.05) than the GSH levels in the other denuded groups. Male pronuclear formation rates of completely denuded oocytes (DO-0, DO-24, and DO-24 + CCs groups) were significantly lower (P < 0.05; 41.4 to 59.3%) than those of the control (89.4%) and the H-DO-24 (80.0%) groups. The blastocyst rate of the control group was significantly higher (P < 0.05; 19.9%) than that of H-DO-24 group (11.6%), and these rates were significantly higher (P < 0.05) than those of the completely denuded groups (3.0 to 4.5%). The results suggest that the presence of cumulus cells during maturation culture improves nuclear maturation of oocytes and plays an important role in embryonic development to the blastocyst stage in vitro.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Á Martíne. Moro ◽  
I Lamas-Toranzo ◽  
L González-Brusi ◽  
A Pérez-Gómez ◽  
P Bermejo-Álvarez

Abstract Study question Does cumulus cell mtDNA content correlate with oocyte developmental potential in the bovine model? Summary answer The relative amount of mtDNA content did not vary significantly in oocytes showing different developmental outcomes following IVF What is known already Cumulus cells are closely connected to the oocyte through transzonal projections, serving essential metabolic functions during folliculogenesis. These oocyte-supporting cells are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Previous studies have positively associated oocytés mtDNA content with developmental potential in both animal models and women. However, it remains debatable whether mtDNA content in cumulus cells could be used as a proxy to infer oocyte developmental potential. Study design, size, duration Bovine cumulus cells were allocated into three groups according to the developmental potential of the oocyte: 1) oocytes developing to blastocysts following IVF (Bl+Cl+), 2) oocytes cleaving following IVF but arresting their development prior to the blastocyst stage (Bl-Cl+), and 3) oocytes not cleaving following IVF (Bl-Cl-). Relative mtDNA content was analysed in 40 samples/group, each composed by the cumulus cells from one cumulus-oocyte complex (COC). Participants/materials, setting, methods Bovine cumulus-oocyte complexes were obtained from slaughtered cattle and individually matured in vitro (IVM). Following IVM, cumulus cells were removed by hyaluronidase treatment, pelleted, snap frozen in liquid nitrogen and stored at –80 ºC until analysis. Cumulus-free oocytes were fertilized and cultured in vitro individually and development was recorded for each oocyte. Relative mtDNA abundance was determined by qPCR, amplifying a mtDNA sequence (COX1) and a chromosomal sequence (PPIA). Statistical differences were tested by ANOVA. Main results and the role of chance Relative mtDNA abundance did not differ significantly (ANOVA p &gt; 0.05) between the three groups exhibiting different developmental potential (1±0.06 vs. 1.19±0.05 vs. 1.11±0.05, for Bl+Cl+ vs. Bl-Cl+ vs. Bl-Cl-, mean±s.e.m.). Limitations, reasons for caution Experiments were conducted in the bovine model. Although bovine folliculogenesis, monoovulatory ovulation and early embryo development exhibit considerable similarities with that of humans, caution should be taken when extrapolating these data to humans. Wider implications of the findings: The use of molecular markers for oocyte developmental potential in cumulus cells could be used to enhance success rates following single-embryo transfer. Unfortunately, mtDNA in cumulus cells was not found to be a good proxy for oocyte quality. Trial registration number Not applicable


Zygote ◽  
2006 ◽  
Vol 14 (1) ◽  
pp. 81-87 ◽  
Author(s):  
P.N. Moreira ◽  
R. Fernández-Gonzalez ◽  
M.A. Ramirez ◽  
M. Pérez-Crespo ◽  
D. Rizos ◽  
...  

It is well known that the preimplantation culture environment to which embryos are exposed influences the expression of developmentally important genes. Recently, it has been reported that MEMα, a culture medium commonly used for somatic cells, allows high rates of preimplantation development and development to term of mouse somatic cell nuclear transfer (SCNT) embryos. The objective of this study was to compare the differential effects of this medium and of the nuclear transfer procedure on the relative mRNA abundance of several genes with key roles during preimplantation. The relative mRNA levels of nine genes (Glut 1, Glut 5, G6PDH, Bax, Survivin, Gpx 1, Oct4, mTert and IGF2bp1) were quantified at blastocyst stage on cumulus cell cloned embryos cultured in MEMα, as well as on in vivo cultured and MEMα cultured controls. Only three of the nine transcripts analysed (Glut 5, Gpx 1 and Igf2bp1) were significantly down-regulated at blastocyst stage in in vitro produced controls. However, most genes analysed in our MEMα cultured cloned embryos showed altered transcription levels. Interestingly, between cloned and in vitro produced controls only the transcription levels measured for Glut 1 were significantly different. This result suggests that Glut 1 may be a good marker for embryo quality after cumulus cell nuclear transfer.


2014 ◽  
Vol 26 (2) ◽  
pp. 337 ◽  
Author(s):  
Satoko Matoba ◽  
Katrin Bender ◽  
Alan G. Fahey ◽  
Solomon Mamo ◽  
Lorraine Brennan ◽  
...  

The follicle is a unique micro-environment within which the oocyte can develop and mature to a fertilisable gamete. The aim of this study was to investigate the ability of a panel of follicular parameters, including intrafollicular steroid and metabolomic profiles and theca, granulosa and cumulus cell candidate gene mRNA abundance, to predict the potential of bovine oocytes to develop to the blastocyst stage in vitro. Individual follicles were dissected from abattoir ovaries, carefully ruptured under a stereomicroscope and the oocyte was recovered and individually processed through in vitro maturation, fertilisation and culture. The mean (± s.e.m.) follicular concentrations of testosterone (62.8 ± 4.8 ng mL–1), progesterone (616.8 ± 31.9 ng mL–1) and oestradiol (14.4 ± 2.4 ng mL–1) were not different (P > 0.05) between oocytes that formed (competent) or failed to form (incompetent) blastocysts. Principal-component analysis of the quantified aqueous metabolites in follicular fluid showed differences between oocytes that formed blastocysts and oocytes that degenerated; l-alanine, glycine and l-glutamate were positively correlated and urea was negatively correlated with blastocyst formation. Follicular fluid associated with competent oocytes was significantly lower in palmitic acid (P = 0.023) and total fatty acids (P = 0.031) and significantly higher in linolenic acid (P = 0.036) than follicular fluid from incompetent oocytes. Significantly higher (P < 0.05) transcript abundance of LHCGR in granulosa cells, ESR1 and VCAN in thecal cells and TNFAIP6 in cumulus cells was associated with competent compared with incompetent oocytes.


2015 ◽  
Vol 27 (1) ◽  
pp. 113
Author(s):  
L. T. K. Do ◽  
Y. Sato ◽  
M. Taniguchi ◽  
T. Otoi

The developmental ability of interspecies somatic cell nuclear transfer (iSCNT) embryos decreases as the taxonomic distance between the donor and recipient species increases. Treatment of cat iSCNT embryos using bovine oocytes with 50 nM of trichostatin A (TSA) improves in vitro embryonic development (Wittayarat et al. 2013 Cell. Reprogram. 15, 301–308). This study investigated whether the TSA treatment effects differ between the development of cat iSCNT embryos reconstructed with porcine and bovine oocytes. Porcine and bovine cumulus-oocyte complexes were in vitro matured for 44 h and 24 h, respectively. After cumulus cell removal, enucleation was performed by aspiration of the metaphase II plate and the first polar body using a piezo-driven pipette. A cat fibroblast cell was then injected into cytoplasm of successfully enucleated oocyte. Reconstructed cybrids were electrically activated by a single 1.5 kV cm–1 pulse for 100 µs (pig-cat embryos), or a 2.3 kV cm–1 pulse for 30 µs (cow-cat embryos). Pig-cat and cow-cat embryos were cultured in porcine zygote medium (PZM)-5 and modified synthetic oviducal fluid medium (mSOF), respectively. After electrical activation, pig-cat and cow-cat embryos were cultured in medium supplemented with 5 µg mL–1 cytochalasin B + 50 nM TSA (TSA group) or without TSA (control group), and the cow-cat embryo medium was also supplemented with 10 µg mL–1 cycloheximide. After 2 h, TSA-treated pig-cat and cow-cat embryos were incubated in medium supplemented with TSA for 22 h, followed by 48 h incubation without TSA. Pig-cat and cow-cat control embryos were cultured in medium without TSA for 70 h after activation. Then, all pig-cat and cow-cat embryos were cultured in porcine blastocyst medium (PBM) or mSOF medium supplemented with 5% fetal bovine serum, respectively, for 5 additional days. Four to seven replicates were performed for each experiment. Data were analysed using Student's t-test. For pig-cat embryos, no difference was observed in cleavage rates between both groups, but development to the blastocyst stage was higher in the pig control group (n = 147, 8.0%) than that of pig TSA group (n = 131, 0.7%; P < 0.05). In contrast, development to the blastocyst stage in cow-cat embryos was not observed in the cow control group (n = 125, 0%), but it was observed in cow TSA group (n = 136, 3.7%). These results indicate that TSA treatment effects are species-specific, but those effects remain to be clarified.


2015 ◽  
Vol 27 (1) ◽  
pp. 112 ◽  
Author(s):  
Y. H. Choi ◽  
I. C. Velez ◽  
B. Macías-García ◽  
K. Hinrichs

In equine cloning, the scarcity of equine oocytes places emphasis on development of the most efficient nuclear transfer (NT) methods possible. In other species, using oocytes matured for the shortest duration needed to reach metaphase II has increased NT efficiency. In the present study, we examined the effect of duration of oocyte maturation at the time of enucleation on equine cloned blastocyst production. Oocytes were collected from live mares by transvaginal ultrasound-guided aspiration of all visible follicles ≥5 mm in diameter. The oocytes were held overnight (16–22 h) at room temperature, matured in vitro, and reconstructed with donor cells as described in our previous study (Choi et al. 2013 Theriogenology 79, 791–796). In Experiment 1, oocytes were divided into 2 groups and matured for 20 or 24 h. After enucleation, oocytes were reconstructed by direct injection of donor cells. Reconstructed oocytes were held for 5 h and then activated by treatment with 5 μM ionomycin for 4 min, then injection with sperm extract, followed by incubation in 2 mM 6-DMAP for 4 h. The activated reconstructed oocytes were cultured in global human embryo culture medium under 5% CO2, 6% O2, and 89% N2 at 38.2°C for 7 to 11 days (20 mM glucose was added at Day 5) and blastocyst rate was recorded. Because a low maturation rate was found at 20 h in Experiment 1, in Experiment 2 oocytes were denuded at 20 h and those that were mature were enucleated and used for NT; those that had not cast out a polar body at 20 h were cultured for an additional 3 h (20 + 3h) and then evaluated for polar body formation and used for NT, which was conducted as in Experiment 1. Data were analysed by Fisher's exact test. In Experiment 1, 203 oocytes were collected in 46 aspiration sessions. The rate of oocyte maturation to metaphase II was significantly lower for oocytes cultured for 20 h (35/116, 30%), than for those cultured for 24 h (47/80, 59%). However, the rate of blastocyst development was significantly higher for oocytes cultured for 20 h (11/27, 41%) than for 24 h (2/38, 5%). In Experiment 2, 89 oocytes were collected in 18 aspiration sessions. After 20 h of maturation culture, 22 oocytes were mature (25%). After an additional 3 h of culture, 21 additional oocytes had matured. There were no significant differences between the two treatments (20 and 20 + 3h) in reconstruction rates (77%, 17/22, and 90%, 19/21, respectively) or blastocyst rates (24%, 4/17, and 32%, 6/19, respectively). These results indicate that duration of in vitro maturation, or the duration of presence of cumulus cells, influences blastocyst development after somatic cell NT in the horse. This appears to be due to a benefit of using oocytes immediately after they reach metaphase II; if this is ensured as in Experiment 2, the duration of maturation itself had no effect.This work was supported by the American Quarter Horse Foundation, the Link Equine Research Endowment Fund, Texas A&M University, and by Ms. Kit Knotts.


Reproduction ◽  
2011 ◽  
Vol 141 (4) ◽  
pp. 425-435 ◽  
Author(s):  
Radek Procházka ◽  
Michal Petlach ◽  
Eva Nagyová ◽  
Lucie Němcová

The aim of this work was to assess the FSH-stimulated expression of epidermal growth factor (EGF)-like peptides in cultured cumulus–oocyte complexes (COCs) and to find out the effect of the peptides on cumulus expansion, oocyte maturation, and acquisition of developmental competencein vitro. FSH promptly stimulated expression of amphiregulin (AREG) and epiregulin (EREG), but not betacellulin (BTC) in the cultured COCs. Expression ofAREGandEREGreached maximum at 2 or 4 h after FSH addition respectively. FSH also significantly stimulated expression of expansion-related genes (PTGS2,TNFAIP6, andHAS2) in the COCs at 4 and 8 h of culture, with a significant decrease at 20 h of culture. Both AREG and EREG also increased expression of the expansion-related genes; however, the relative abundance of mRNA for each gene was much lower than in the FSH-stimulated COCs. In contrast to FSH, AREG and EREG neither stimulated expression ofCYP11A1in the COCs nor an increase in progesterone production by cumulus cells. AREG and EREG stimulated maturation of oocytes and expansion of cumulus cells, although the percentage of oocytes that had reached metaphase II was significantly lower when compared to FSH-induced maturation. Nevertheless, significantly more oocytes stimulated with AREG and/or EREG developed to blastocyst stage after parthenogenetic activation when compared to oocytes stimulated with FSH alone or combinations of FSH/LH or pregnant mares serum gonadotrophin/human chorionic gonadotrophin. We conclude that EGF-like peptides do not mimic all effects of FSH on the cultured COCs; nevertheless, they yield oocytes with superior developmental competence.


2021 ◽  
Vol 10 (3) ◽  
pp. e15710313074
Author(s):  
Denilsa Pires Fernandes ◽  
Fernanda Araujo dos Santos ◽  
Luã Barbalho de Macêdo ◽  
Roberta Gonçalves Izzo ◽  
Brenna de Sousa Barbosa ◽  
...  

The aim of this study was to evaluate the effect of three different incubation times on in vitro maturation of domestic cat oocytes. Thus, ovaries (n = 42) were submitted to slicing procedure and the oocytes recovered were classified; only good quality oocytes (Grade I and II) underwent in vitro maturation for three different periods (24 vs. 30 vs. 36 h) in supplemented TCM-99 medium. After, oocytes were evaluated for cumulus cell expansion and presence of the first polar body. After six replicates (7 ± 1,7 ovaries per replicate), a total of 334 viable oocytes were recovered. Differences (p <0.05) were observed regarding the percentage of oocytes presenting expansion of the cumulus cells, where higher values were observed in the group of oocytes incubated for 36 h (84.3%), when compared to 30 (73.4%) and 24 h (71.0%). Moreover, differences were also observed regarding the presence of the first polar body (24 h: 29.7%; 30 h: 58.2%; 36 h: 69.8%). We conclude that the incubation period influenced the maturation rates, indicating 36 h as the ideal period for the in vitro maturation of domestic cat oocytes in supplemented TCM-199 medium.


Author(s):  
Adek Amansyah

Objective: To evaluate the relationship between the number of LH receptor and the success of oocyte maturity in the process of in vitro maturation (IVM). Method: This experimental study was conducted in the Permata Hati Infertility Clinical Laboratory, Dr. Sardjito General Hospital, Yogyakarta, with the samples of 300 oocytes obtained through collecting immature cow’s oocytes from the abattoir and grouped the oocytes into 3 (three) groups based on the pattern of oocyte cumulus cells on the vesicle germinal stage 2 - 8 mm with three layers of cumulus cell. The sample of the cumulus cells from these three groups were taken and the LH receptor examination was done with immunohistochemistry. After that, the IVM process was performed to the three groups and its development for 24 hours was evaluated. Its maturation quality was evaluated with the emergence of the first polar body (1PB) and compared to the other groups and related to the number of LH receptor in the three groups. Result: The result of this study indicated that the oocyte cumulus cells showed a difference of function during IVM process. The maturity rate in this study showed that the number of LH receptor was related to the morphological pattern of oocyte cumulus cells with oocyte maturity. The maturity of the cumulus cells which 100% covered the oocyte was higher than that of the cumulus cells which > 50% and < 30% covered the oocytes, namely, 74% compared to 60% and 12%. The result of this study also showed that the average number of LH receptors in the three groups (A, B, and C) was 183.4, 78.8, and 24.0 respectively. A significant difference was found in the three groups (p < 0.0001). When related to IVM maturity, this difference showed that the bigger number of oocyte cumulus cells influenced the oocyte maturity. Conclusion: The number of LH receptor can be used as a prediction to determine the success of oocyte maturation in the process of in vitro maturation. [Indones J Obstet Gynecol 2013; 1-4:183-7] Keywords: IVM, LH receptor, oocyte cumulus cell


Sign in / Sign up

Export Citation Format

Share Document