208 EFFECT OF GDF8 AND SB-431542 ON PORCINE OOCYTE DURING IN VITRO MATURATION AND SUBSEQUENT EMBRYONIC DEVELOPMENT

2016 ◽  
Vol 28 (2) ◽  
pp. 235
Author(s):  
J. D. Yoon ◽  
E. Lee ◽  
S.-H. Hyun

Growth differentiation factor-8 (GDF8) is a member of the transforming growth factor-β that has been identified as a strong physiological regulator. SB-431542 (SB) is a specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors such as ALK4, ALK5, and ALK7. The purpose of this study is investigation of the effects of GDF8 and SB on porcine oocytes during in vitro maturation and subsequent embryonic development. We first performed ELISA to detect GDF8 concentrations in follicular fluid for each size of follicle; sizes were as follows: small (<3 mm), medium (>3 mm and <6 mm), and large (>6 mm) follicle. After detection of the GDF8 concentration in follicular fluid, we investigated the effect of GDF8 and SB treatment during in vitro maturation (IVM) on nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels, and embryonic development after IVF and parthenogenetic activation (PA). Data were analysed by ANOVA followed by Duncan using SPSS (Statistical Package for Social Science, IBM, New York, NY, USA) mean ± SEM. The ELISA result showed different concentrations of GDF8 for each grade of follicular fluid: small, 0.479 ng mL–1; medium, 0.668 ng mL–1; and large, 1.318 ng mL–1. During the IVM process, 1.318 ng mL–1 of GDF8 and 5 ng mL–1 of SB were added to the maturation medium as control, SB, SB+GDF8, and GDF8 treatment groups. After 44 h of IVM, GDF8 group (90.4%) showed a significantly higher nuclear maturation rate than control and SB+GDF8 groups (85.4 and 81.7%). The SB group (78.9%) showed significantly reduced nuclear maturation rate compared with control (P < 0.05). The GDF8 treatment group showed a significant decreased intracellular ROS and increased GSH levels compared with other groups (P < 0.05). The SB+GBF8 treatment group showed a significantly better cytoplasmic maturation than the SB treatment group. In the PA embryonic development analysis, the GDF8 treatment group showed a significantly higher blastocyst formation rate compared with other groups (47.9, 37.2, 46.4, and 58.7% respectively; P < 0.05). In the IVF embryonic development analysis, the GDF8 treatment groups showed significantly higher blastocyst formation rate compared with the SB group (28.2 and 42.2%, respectively; P < 0.05). In conclusion, treatment with GDF8 during porcine oocyte IVM improved the embryonic developmental competence via increased cytoplasmic maturation and led to better oocyte maturation from the ALK receptor inhibition by SB.

Zygote ◽  
2020 ◽  
pp. 1-6
Author(s):  
Ji-Eun Park ◽  
Sang-Hee Lee ◽  
Yong Hwangbo ◽  
Choon-Keun Park

Summary The aim of the present study was to investigate the effects of porcine follicular fluid (pFF) from large-sized (LFF; >8 mm in diameter) and medium-sized (MFF; 3–6 mm in diameter) follicles on the maturation and developmental competence of porcine oocytes. Cumulus–oocyte complexes (COCs) were collected from follicles 3–6 mm in diameter. The collected COCs were incubated for 22 h with LFF or MFF (in vitro maturation (IVM)-I stage) and were incubated subsequently for 22 h with LFF or MFF (IVM-II stage). Cumulus expansion was confirmed after the IVM-I stage and nuclear maturation was evaluated after the IVM-II stage. Intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured and embryonic development was evaluated. Relative cumulus expansion and GSH levels were higher in the LFF group compared with in the MFF group after the IVM-I stage (P < 0.05). After the IVM-II stage, the numbers of oocytes in metaphase-II were increased in the LFF group and GSH content was higher in all of the LFF treatment groups compared with in the MFF treatment groups during both IVM stages (P < 0.05). ROS levels were reduced by LFF treatment regardless of IVM stage (P < 0.05). Blastocyst formation and the total numbers of cells in blastocysts were increased in all LFF treatment groups compared with the control group (P < 0.05). These results suggested that pFF from large follicles at the IVM stage could improve nucleic and cytoplasmic maturation status and further embryonic development through reducing ROS levels and enhancing responsiveness to gonadotropins.


Zygote ◽  
2013 ◽  
Vol 22 (2) ◽  
pp. 286-289 ◽  
Author(s):  
Su Jin Kim ◽  
Ok Jae Koo ◽  
Dae Kee Kwon ◽  
Jung Taek Kang ◽  
Sol Ji Park ◽  
...  

SummaryThe presence of glutamine (Gln) in in vitro maturation (IVM) and in vitro culture (IVC) medium is a more potent factor for improving porcine oocyte and embryo development than other amino acids. However Gln is inherently unstable and spontaneously breaks down into ammonia, and therefore interferes with proper development. To avoid this adverse effect, Gln was replaced in the present study with its stable dipeptide derivative alanyl-glutamine (Ala-Gln) and the effects of this replacement on porcine IVM and IVC were evaluated. Replacement of Gln with Ala-Gln during IVM did not improve nuclear maturation, however numbers of early cleaved embryos were significantly increased after activation. Blastocyst formation rates were also significantly improved by using Ala-Gln during IVM. Replacement of Gln with Ala-Gln during IVC significantly increased total cell numbers in blastocysts. Blastocyst formation rate was also significantly higher when Ala-Gln was used in both IVM and IVC. In conclusion, the use of Ala-Gln rather than Gln gives better results for development in both porcine IVM and IVC.


2014 ◽  
Vol 26 (1) ◽  
pp. 191
Author(s):  
Y. Jeon ◽  
J. D. Yoon ◽  
L. Cai ◽  
S. U. Hwang ◽  
E. Kim ◽  
...  

Zinc (Zn) is one of the abundant transition metals in biology and is an essential component of most cells. However, there are few reports about the effect of Zn in porcine oocytes. The objective was to investigate the effects of supplementary Zn during in vitro maturation (IVM) of porcine oocytes. We investigated nuclear maturation, intracellular glutathione (GSH) levels, reactive oxygen species (ROS) levels, and subsequent embryonic development after IVF. Before the experiment, Zn concentrations in IVM medium and body fluids were measured using inductively coupled plasma spectrophotometer (sensitivity: 1 μM) and treatment concentrations were determined. Zinc concentration was 12.6 μM in porcine plasma and 12.9 μM in porcine follicular fluid. We confirmed that Zn was not detected in IVM medium. A total of 541 cumulus–oocyte complexes (COC) were used for the evaluation of nuclear maturation. The COC were matured in TCM-199 medium supplemented with various concentrations of Zn (0, 6, 12, 18, and 24 μM). After 44 h of IVM, no significant difference was observed in all groups (metaphase II rate: 85.7, 88.7, 90.4, 90.3, and 87.2%, respectively). A total of 100 matured oocytes were examined for the effects of different Zn concentrations (0, 6, 12, 18, and 24 μM) on porcine oocyte intracellular GSH and ROS levels, which were measured through fluorescent staining and image analysis program. The groups of 12, 18, and 24 μM showed a significant (P < 0.05) increase in intracellular GSH levels (1.45, 1.67, and 1.78, respectively) compared with the control and 6 μM group (1.00 and 1.08, respectively). The intracellular ROS level of oocytes matured with 12, 18, and 24 μM (0.82, 0.68, and 0.55) were significantly (P < 0.05) decreased compared with the control and 6 μM groups (1.00 and 1.03, respectively). Finally, the developmental competence of oocytes matured with different concentrations of Zn (0, 6, 12, 18, and 24 μM) was evaluated after IVF. There were no significantly different in cleavage rates. However, cleavage patterns and blastocyst (BL) formation were different. Fragmented embryo ratio of the 12 μM group (14.9%) was significantly lower than that of the other groups (control, 6, 18, and 24 μM: 26.4, 17.8, 18.4, and 18.0%, respectively). Oocytes treated with 12 μM Zn during IVM had a significantly higher BL formation rate (28.2%) after IVF compared with the control (19.8%). In conclusion, these results indicate that Zn treatment as body fluid concentration during IVM improved the developmental potential of IVF in porcine embryos by increasing the intracellular GSH concentration and decreasing the ROS level. This work was supported, in part, by a grant from the Next-Generation Bio Green 21 Program (No. PJ00956901), Rural Development Administration, and the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2012R1A1A4A01004885, NRF-2013R1A2A2A04008751), Republic of Korea.


2014 ◽  
Vol 26 (1) ◽  
pp. 190
Author(s):  
E. Kim ◽  
Y. Jeon ◽  
J. D. Yoon ◽  
L. Cai ◽  
S. U. Hwang ◽  
...  

The objective was to investigate the effects of zinc (Zn) insufficiency during in vitro maturation (IVM) of porcine oocytes. Zinc insufficiency was induced by treatment of Zn chelator, N,N,N′,N′-tetrakis-(2-pyridylmethyl)-ethylendiamine (TPEN). In experiment 1, we investigated the effect of duration of Zn insufficiency in IVM on oocytes maturation and subsequent embryonic development after parthenogenetic activation (PA). First, 10 μM TPEN was added to the IVM medium for 0, 7, 15, or 22 h. After TPEN treatment, 10 μM Zn were supplemented on IVM medium except in the 0 h group. Reductions in the nuclear maturation rates were dependent on TPEN duration. The 0-h-treated oocytes showed 83.9 ± 3.9% metaphase II (MII) rate; the 7-h-treated oocytes had significantly lower MII rate (44.8 ± 3.0%) than 0-h-treated oocytes. The majority of 15- and 22-h-treated oocytes were arrested at metaphase I (MI rate: 98.0 ± 1.0 and 97.2 ± 1.7%, MII rate: 0 and 0%, respectively). Embryonic developmental competence was similar to maturation results. Reduction in cleavage and blastocyst (BL) rates were also dependent on duration of TPEN treatment (cleavage rate: 65.3 ± 1.4, 42.6 ± 4.8, 2.6 ± 0.1, and 3.0 ± 1.6%; BL formation rate: 29.3 ± 2.8, 9.2 ± 1.5, 0, and 0% for 0, 7, 15, and 22 h). Total cell number of BL was also significantly different. Total cell number of BL in the 0-h-treated group (51.4 ± 4.5) was significantly higher than that in the 7-h-treated group (23.2 ± 1.6). In experiment 2, to confirm that the Zn insufficiency caused oocyte immaturities and loss of developmental competence in TPEN-treated oocytes, we investigated nuclear maturation and subsequent embryonic development following 3 groups: (1) non treatment (control); (2) 10 μM TPEN treatment during 22 h of IVM; (3) 10 μM TPEN + 10 μM Zn treatment during 22 h of IVM. Only TPEN-treated oocytes and TPEN+Zn-treated oocytes showed contrasting results. Oocyte maturation rates and subsequent embryonic development competence in TPEN with Zn-treated oocytes were similar to control (MII rate: 93.0 ± 1.2 and 92.7 ± 1.8%, BL formation rate: 42.0 ± 6.7 and 40.0 ± 7.5% for TPEN+Zn-treated oocytes and control). These results were significantly different compared with only TPEN-treated oocytes’ results (MII rate: 0.61 ± 0.61%, BL formation rate: 0%). In conclusion, Zn is an essential element for successful oocyte maturation and embryo development in porcine. Zinc insufficiency caused meiotic block and had lasting effects on early embryo development. This work was supported, in part, by a grant from the Next-Generation BioGreen 21 Program (No. PJ00956901), Rural Development Administration, and the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2012R1A1A4A01004885, NRF-2013R1A2A2A04008751), Republic of Korea.


2012 ◽  
Vol 24 (1) ◽  
pp. 207 ◽  
Author(s):  
S. S. Kwak ◽  
S. A. Jeong ◽  
Y. B. Jeon ◽  
S. H. Hyun

The present study investigated the effects of resveratrol (a phytoalexin with various pharmacological activities) during in vitro maturation (IVM) of porcine oocytes on nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, gene expression in matured oocytes and subsequent embryonic development after parthenogenetic activation (PA) and IVF. Data were analyzed with SPSS 17.0 using Duncan's multiple range test. In experiment 1, a total of 1146 cumulus–oocyte complexes (COC) were divided into 5 groups (0, 0.1, 0.5, 2.0 and 10.0 μM resveratrol). In the nuclear maturation after 44-h IVM, the groups of 0.1, 0.5 and 2.0 μM (83.0, 84.1 and 88.3%, respectively) had no significant difference compared to the control group (84.1%). The group of 10.0 μM decreased the nuclear maturation (75.0%) significantly (P < 0.05). In experiment 2, a total of 300 matured oocytes were examined for the effects of different resveratrol concentrations (0, 0.5, 2.0 and 10.0 μM) on porcine oocyte intracellular GSH and ROS levels. The groups of 0.5 and 2.0 μM showed a significant (P < 0.05) increase in intracellular GSH levels (1.3 and 1.3, respectively) compared with the control and 10.0 μM groups (1.0 and 1.0, respectively). The intracellular ROS level of oocytes matured with 2.0 μM resveratrol (0.4) was significantly (P < 0.05) decreased compared to other groups (control: 1.0; 0.5 μM: 0.6; and 10.0 μM: 0.7). In experiment 3, lower expression of apoptosis-related genes (Bax, Caspase-3 and Bak) was observed in matured oocytes treated with 2.0 μM resveratrol when compared with that of the control (P < 0.05). In experiment 4, a total of 728 oocytes were divided into 4 groups (control, 0.5, 2.0 and 10.0 μM) and examined subsequent to embryonic development after PA. Oocytes treated with 2.0 μM resveratrol during IVM had a significantly higher cleavage (CL) rate, blastocyst (BL) formation rate and total cell numbers (TCN) after PA compared with those of the control (2.0 μM: 96.6%, 62.1% and 49.1 vs control: 88.3%, 48.8% and 41.4, respectively) and the 10.0 μM groups (87.3%, 41.4% and 40.9, respectively). Oocytes treated with 0.5 μM resveratrol (87.2%, 50.5% and 48.6, respectively) during IVM had significantly higher TCN, but there were no differences in CL and BL formation rates. In experiment 5, a total of 935 oocytes in 3 groups (control, 2.0 and 10.0 μM resveratrol) were conducted in IVF. The BL formation rate and TCN were significantly higher in the group of 2.0 μM resveratrol (20.5% and 54.0, respectively) than the control (11.0% and 43.4, respectively) and 10.0 μM group (11.7% and 45.0, respectively), but there was no significant difference in CL rate. In conclusion, 2.0 μM resveratrol supplementation during IVM improved the developmental potential of PA and IVF in porcine embryos by increasing the intracellular GSH concentration, decreasing the ROS level and decreasing apoptosis-related gene expression during oocyte maturation. This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ008121), Rural Development Administration, Republic of Korea.


2009 ◽  
Vol 21 (1) ◽  
pp. 219
Author(s):  
F. R. O. de Barros ◽  
M. G. Marques ◽  
M. D. Goissis ◽  
M. A. Peres ◽  
M. P. Milazzotto ◽  
...  

The aim of this study was to compare 2 different techniques to obtain swine oocytes from abattoir ovaries. Ovaries were washed in saline at 35°C and submitted to slashing or aspiration, simultaneously. For the slashing group, ovaries were held with a hemostat inside a beaker containing 35 mL of HEPES-buffered Tyrode’s media (HbT) and follicles (2–6 mm) were incised with a scalpel. For every 5 slashed ovaries, HbT-containing follicular fluid was transferred to 50-mL centrifuge tubes. For the aspiration group, follicles (2–6 mm) were aspirated using an 18-gauge needle and a 5-mL syringe. The follicular fluid of each ovary was transferred to a 50-mL centrifuge tube. Tubes from both techniques were placed in a water bath at 35°C for 15 min to allow settling of the cumulus–oocyte complexes (COC). The supernatant was removed and the sediment was resuspended in HbT and placed in water bath at 35°C for an additional 15 min. The sediment was resuspended in 15 mL of HbT and COC were recovered under stereomicroscopy. Oocytes were in vitro matured for 44 h in TCM-199 added with 10% porcine follicular fluid (PFF) and hormones (LH and FSH) at 38.5°C, 5% CO2 and high humidity. The oocyte recovery rate of each technique was determined by the ratio between the number of COC and ovaries used. To verify nuclear maturation by epifluorescence microscopy (Zeiss), oocytes were fixed, permeabilized, and incubated in 10 μg mL–1 of RNAse for 30 min and in 10 μg mL–1 of propidium iodide for 10 min. Heat shock protein 70 (HSP70) content was assessed as described in Kawarsky and King (2001 Zygote 9(3), 39–50) to verify the metabolic stress. Data were analyzed by ANOVA and Tukey’s test using the software Statistica for Windows. A level of 5% was considered significant in all assessments. The oocyte recovery rate (COC/ovary) was higher for the slashing group (2.665 ± 0.38) compared with the aspiration group (1.762 ± 0.15). The percentage of oocytes that reached the germinative vesicle (GV) stage (h 0 of maturation) did not differ between groups (100 ± 0 and 86.66 ± 13.36, slashing and aspiration group, respectively). The same was observed for the percentage of oocytes that reached the metaphase II stage (MII, after 44 of maturation; 79.99 ± 9.74 and 96.00 ± 4.00, slashing and aspiration group, respectively). Moreover, no difference at pixel quantification of HSP70 was observed between groups (256.50 ± 42.42 and 238.61 ± 71.18, slashing and aspiration group, respectively). In conclusion, the slashing procedure provided a better oocyte recovery rate compared with the aspiration of ovaries. This technique does not affect nuclear maturation, because no differences were observed regarding the percentage of oocytes that reached the GV and MII stages. In addition, it does not affect HSP70 content, suggesting that the slashing of ovaries does not increase the basal stress of oocytes in an in vitro-maturation system.


2016 ◽  
Vol 28 (2) ◽  
pp. 234
Author(s):  
P. Ferré ◽  
T. T. M. Bui ◽  
M. T. Tran ◽  
T. Wakai ◽  
H. Funahashi

The interruption of communication between oocyte and cumulus cells (CC) can trigger meiotic resumption and exogenous additives, such as follicular fluid (FF) and growth differentiation factor-9 (GDF9), can improve oocyte quality and the developmental competence. This study was undertaken to examine if the absence and presence of FF from medium follicles (MF; 3–6 mm in diameter) or recombinant human GDF9 (Biovision, Milpitas, CA, USA) during the first or/and second half of in vitro maturation (IVM) had any effects on IVM of oocytes from small follicles (SF; 0.5–2 mm in diameter) or MF when the oocytes were denuded at 20 h after the start of IVM. Cumulus-oocyte complexes (COC) were aspirated from SF or MF of slaughtered prepubertal gilt ovaries. Groups of ~30 COC were cultured in a 300-μL drop of porcine oocyte medium containing 50 µM β-mercaptoethanol (mPOM) with or without 10% (v/v) FF and/or 100 ng mL–1 GDF9 at 39°C and 5% CO2 in air. During the first 20 h after the start of IVM, the medium was supplemented with 1 mM dibutyryl c-AMP, 10 IU mL–1 eCG and 10 IU mL–1 hCG. After the first period of IVM, the CC surrounding the oocytes were removed and the denuded oocytes continued culture for IVM with or without FF or/and GDF9 in the absence of dibutyryl c-AMP and gonadotropins in the same medium for another 24 h. At the end of IVM, meiotic progression of the oocytes was examined by DAPI staining. Statistical analyses from at least 4 replicates data were performed by a 2-way ANOVA and a Tukey’s multiple comparisons test. Removal of CC 20 h after the start of IVM significantly improved the incidence of mature oocytes derived from SF (59.2–64.1% v. 41.6–43.1% in controls, P < 0.05) but not from MF (73.1–78.5% v. 70.6–71.8% in controls), whereas regardless of supplementation with FF or GDF9, the maturation rates were always significantly higher in the denuded oocytes from MF (72.4–83.6%) than SF (57.8–66.2%; P < 0.05). Despite of the origin of COC (SF or MF), maturation rates of oocytes denuded 20 h after the start of IVM were not affected by supplementation with FF or GDF9 during the first and/or second half of IVM (P > 0.05). In summary, CC removal from COC 20 h after the start of IVM promotes nuclear maturation of oocytes from SF. Exogenous additives such as GDF9 and follicular fluid from MF do not seem to affect the promotion of nuclear maturation in our experimental conditions.


2011 ◽  
Vol 85 (Suppl_1) ◽  
pp. 434-434
Author(s):  
Islam M. Saadeldin ◽  
Ok Jae Koo ◽  
Jung Taek Kang ◽  
Dae Kee Kwon ◽  
Solji Park ◽  
...  

Author(s):  
D. Borah ◽  
R.K. Biswas

Present study was carried out to find the effect of combining EGF with IGF, cysteine and sodium pyruvate singly as additive in a medium consisting of TCM-199 + 100 µl/ml foetal bovine serum + 100 µM/ml cysteamine + 1 µg/ml 17â- Oestradiol + 5 µg/ml pFSH + 5µg/ml oLH + 10 per cent follicular fluid and 10 per cent oestrous goat serum on in-vitro maturation (IVM) of caprine oocytes on incubation at 38.50C for 24 hours in a CO2 incubator maintaining 5 per cent CO2 under humidified condition. The additives comprised 10 ng/ml EGF + 50 ng/ml IGF-1, 10 ng/ml EGF + 600 µM/ml cysteine and 10 ng/ ml EGF + 0.2 mM/ml sodium pyruvate. The IVM rate of oocytes on the basis of cumulus cells expansion and nuclear maturation was found to be significantly higher (P less than 0.05) with EGF + IGF-1 (88.74 ± 1.85% and 61.71 ± 1.61%) than with EGF + sodium pyruvate (82.86 ± 0.97% and 54.62 ± 1.88%), EGF + cysteine ( 78.58 ± 1.45% and 49.02 ± 1.52%) and without additive (control) (75.27 ± 1.58% and 43.03 ± 1.48%).


Sign in / Sign up

Export Citation Format

Share Document