53 TARGETED SCREEN FOR AMINO ACIDS THAT REGULATE BOVINE INNER CELL MASS DEVELOPMENT

2016 ◽  
Vol 28 (2) ◽  
pp. 156
Author(s):  
V. Najafzadeh ◽  
R. Martinus ◽  
B. Oback

Pluripotency relies on species-specific amino acid (AA) metabolism. In the mouse, inner cell mass (ICM) and ICM-derived pluripotent stem cells (PSCs) need threonine, which is catabolized by threonine dehydrogenase (TDH) into acetyl–CoA and glycine. Depleting (Δ) the culture medium of threonine (ΔT) or blocking TDH activity induces PSC death. By contrast, human PSCs do not survive without lysine (ΔK), leucine (ΔL), or methionine (ΔM). Since isolated bovine PSCs cannot be propagated in vitro, we screened for AAs that selectively support pluripotent ICM cells in intact bovine embryos. Five days (D5) post-IVF, embryos were transferred into glutamine-free synthetic oviduct fluid (gSOF) with Eagle’s nonessential (NE) and essential (E) AAs (gSOF_AA) plus BSA. Embryos were individually cultured until D8 under different conditions. Statistical significance was determined using Fisher’s exact test for blastocyst development (morphological grading to IETS standard) and t-tests for cell numbers (differential stain) and gene expression (quantitative or qPCR). Removal of BSA reduced grade 1–3 blastocyst (B1–3) development (37% v. 25%, n = 3; P < 0.001). Depleting NEAAs from gSOF_AA did not significantly decrease B1–3, but depleting all 12 EAAs did (25% v. 8%, n = 6; P < 0.001). Because ΔEAA was most effective, we focused on this. Experiments were conducted in gSOF+NEAA and compared with gSOF_AA as a positive control (n = 2–6 replicates). One (ΔT, ΔM), two (ΔMT, ΔCM, ΔCT; ΔIL, ΔIK, ΔKL), three (ΔCMT, ΔIKL), or six (ΔHPRVWY) EAA drop-out did not affect blastocyst formation, even when NEAAs were also removed for ΔT and ΔM groups (n = 3). However, depleting another six (ΔCIKLMT), nine (+CMT, +IKL), or eleven EAAs (+T, +M) increasingly compromised B1–3 (P < 0.05). Because no clear EAA candidates emerged from the screen, we focused on TDH. TDH mRNA was present at similar levels in microsurgically isolated (by microblade) trophectoderm (TE) and chemically isolated (by Triton X-100) ICM, but undetectable in five adult tissues. Despite ΔT medium showing no effect, exposure to the TDH inhibitor QC1 (50 µM) reduced B1–3 and B1–2 compared with a dimethylsulfoxide (DMSO) solvent control (25% v. 37% and 8% v. 19%, n = 8; P < 0.005). ICM and TE cell numbers were equally reduced in QC1 v. DMSO-treated blastocysts (10 v. 19 and 37 v. 67 with N = 21 and N = 29 embryos, respectively, n = 3; P < 0.005). Yet TDH, hypoblast (PDGRFα), epiblast (NANOG, FGF4, SOX2), and trophoblast (CDX2, KRT8) markers were not consistently affected by QC1. We next applied 3-hydroxynorvaline (3-HNV), which TDH hydrolyses into glycine and propionyl-CoA instead of acetyl-CoA. Compared with solvent controls, 3-HNV (300 µM) killed all embryos and bovine fetal fibroblasts within 3 days in ΔT medium. This toxic effect was fully rescued by >10-fold T-supplementation. Thus, 3-HNV protein incorporation, rather than acetyl-CoA reduction, may nonspecifically impair cellular function. In summary, we found that bovine ICM formation did not specifically depend on metabolizing threonine or any other single EAA. Research was supported by AgResearch Core Funding.


2004 ◽  
Vol 16 (2) ◽  
pp. 144
Author(s):  
P. Kasinathan ◽  
M.F. Nichols ◽  
J.E. Griffin ◽  
J.M. Robl

Chimeras have been used for investigating fundamental aspects of early embryonic development, and differentiation, and for introducing foreign genes into mammals (Robertson et al., 1986 Nature 323, 445–448; Cibelli et al., 1998 Science 280, 1256–1258). The main objective of this study was to determine if the transfer of blastomeres from in vitro-produced (IVP) embryos into cloned, transchromosomic embryos improved the efficiency of producing transchromosomic calves. Cloned embryos were produced using in vitro-matured bovine oocytes and bovine fetal fibroblasts containing a human artificial chromosome (HAC) (Kuroiwa et al., 2002 Nat Biotechnol 20, 889–894). IVP embryos were produced using standard procedures and blastomeres were harvested at the 8–16 cell stage by removing the zona pellucida with protease. Cloned embryos were randomly divided on Day 4 into two groups. One group received 3–4 IVP blastomeres while a second group served as a control (nonmanipulated cloned embryos). After transferring the blastomeres, the chimeric and cloned embryos were placed in culture (Kasinathan et al., 2001 Biol. Reprod. 64, 1487–1493) and on Day 7 development to the blastocyst stage was evaluated. Grades 1 and 2 embryos were transferred; two each per synchronized recipient. Pregnancy maintenance, calving, and calf survival were evaluated in both groups. Presence of a HAC in live calves was evaluated in both fibroblasts and peripheral blood lymphocytes (PBLs) using FISH analysis. Embryo development to the blastocyst stage, maintenance of pregnancy and number of calves born were analyzed using Chi-square. There were no differences in the rate of blastocyst development at day 7 or establishment of pregnancy at 40d (P&gt;0.05). However, pregnancy rate at 120d, and number of calves that developed to term and were alive at birth (chimera 14/54 and clone 4/90), and at 1 month of age (chimera 13/54 and clone 1/90) were lower (P&lt;0.01) for cloned embryos. The proportion of cells containing an HAC in PBLs, was higher in cloned calves (100%) compared to chimeric calves (26%). The HAC retension rates in PBLs in HAC-positive chimeric and cloned calves were 84% and 95%, respectively. These data indicate that, although the proportion of calves retaining an HAC was lower in chimeras compared to clones, more HAC-positive calves were produced in the chimeric treatment from fewer cloned embryos. We speculate that higher rates of development in the chimeras may be related to the normality of the placenta. Future studies will be required to determine the contribution of the IVP blastomeres to both the inner cell mass and trophectoderm. Therefore, a chimeric approach may be useful for improving the efficiency of producing cloned transchromosomic calves.



2019 ◽  
Vol 97 (12) ◽  
pp. 4946-4950 ◽  
Author(s):  
Lydia K Wooldridge ◽  
Madison E Nardi ◽  
Alan D Ealy

Abstract Deficiencies in current embryo culture media likely contribute to the poor blastocyst development rates and pregnancy retention rates for in vitro produced (IVP) bovine embryos. Of special concern is the lack of micronutrients in these media formulations. One micronutrient of interest is zinc, an essential trace element involved with various enzyme and transcription factor activities. The objective of this work was to describe whether zinc sulfate supplementation during in vitro embryo culture affects bovine embryo development and blastomere numbers. Either 0, 2, 20, or 40 µM zinc sulfate was supplemented to presumptive zygotes cultured in synthetic oviductal fluid containing AAs and bovine serum albumin for 8 d. None of the treatments affected cleavage rates. Percentage of blastocysts on days 7 and 8 postfertilization was not affected by supplementing 2 or 20 µM zinc but were reduced (P &lt; 0.05) with 40 µM zinc. In blastocysts harvested on day 8, inner cell mass (ICM) and total cell number were increased (P &lt; 0.05) with 2 µM zinc supplementation but not with the other zinc concentrations. Numbers of trophectoderm cells were not affected by zinc treatment. In conclusion, supplementing zinc during bovine embryo culture did not impact blastocyst development but improved ICM cell numbers. This improvement in ICM cell number may have implications for improved pregnancy retention rates after IVP embryo transfer as smaller ICM sizes are associated with poor pregnancy success in cattle.



2008 ◽  
Vol 20 (1) ◽  
pp. 188
Author(s):  
D. N. Q. Thanh ◽  
K. Kikuchi ◽  
T. Somfai ◽  
M. Ozawa ◽  
M. Nakai ◽  
...  

Mammalian eggs are so microlecithal that the embryos would be expected to divide in unison and that each division would lead to 2 equal blastomeres, which are believed to have a greater competence for further development than zygotes with unequal cleavage. However, some studies have shown that uneven blastomere size commonly occurs from the very first division in mammals, and it seems to be concerned with the generation of the first cell lineages of the blastocyst cells: trophectoderm and the inner cell mass (Gueth-Hallonet and Maro 1992 Trends Genet. 8, 274–279). In our study, we produced porcine embryos in vitro (Kikuchi et al. 2002 Biol. Reprod. 66, 1031–1041), and newly formed 2-cell embryos were collected. Based on the timing of the first cleavage (30 or 36 h after insemination), the cleavage pattern (E: equal; U: unequal) and the presence or absence of a second cleavage (+ or –) within the first 2 days of IVC was classified into groups: 30E(–), 30E(+), 30U(–), 30U(+), 36E(–), 36E(+), 36U(–), or 36U(+). There was no difference between the 30E and 30U groups in proportions of the 2-cell stage, which had a nucleus in both blastomeres (99.0 � 0.8% and 91.4 � 3.6%, respectively) or between the 36E and 36U groups (98.2 � 1.1% and 88.0 � 7.2%, respectively). Comparison of further development between the 30E and 30U groups showed that there was no difference in blastocyst rates (70.7 � 5.7% and 61.7 � 7.8%, respectively) and total cell numbers (39.1 � 2.1 and 31.7 � 2.3, respectively). Although the blastocyst rate in the 36E group (37.3 � 6.7%) was significantly higher (P < 0.05) than that of the 36U group (12.0 � 5.1%), the total cell number was not different (26.3 � 5.5 and 25.3 � 5.2, respectively). The timing of the first division, however, had a great influence on further development of the embryos; the 30-h cleaved embryos had a greater rate of blastocyst development (68.2 � 6.3%) than did the 36-h embryos (28.2 � 4.8%, P < 0.01 by ANOVA). The cell numbers of blastocysts derived from 30-h cleaved embryos (37.2 � 2.6) were significantly higher than those of the 36-h embryos (26.2 � 2.3, P < 0.01) as well. Two-cell embryos that were newly formed at 30 h and underwent the next cleavage within the first 2 days of IVC (30 + group) had a higher blastocyst rate (74.8 � 7.0%) and greater cell numbers (40.6 � 2.6) than those not showing a second division during this period (30– group; 46.8 � 5.0% and 19.9 � 2.2, respectively). In contrast, for embryos showing the first cleavage at 36 h of insemination, the presence of the next cleavage within 2 days after the first cleavage did not have any effect on embryonic development. These results suggest that the developmental ability of porcine embryos was influenced by the timing and shape of the first cleavage and by the subsequent occurrence of the second cleavage.



Reproduction ◽  
2015 ◽  
Vol 150 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Young-Ho Choi ◽  
Pablo Ross ◽  
Isabel C Velez ◽  
B Macías-García ◽  
Fernando L Riera ◽  
...  

Equine embryos developin vitroin the presence of high glucose concentrations, but little is known about their requirements for development. We evaluated the effect of glucose concentrations in medium on blastocyst development after ICSI. In experiment 1, there were no significant differences in rates of blastocyst formation among embryos cultured in our standard medium (DMEM/F-12), which contained >16 mM glucose, and those cultured in a minimal-glucose embryo culture medium (<1 mM; Global medium, GB), with either 0 added glucose for the first 5 days, then 20 mM (0-20) or 20 mM for the entire culture period (20-20). In experiment 2, there were no significant differences in the rates of blastocyst development (31–46%) for embryos cultured in four glucose treatments in GB (0-10, 0-20, 5-10, or 5-20). Blastocysts were evaluated by immunofluorescence for lineage-specific markers. All cells stained positively forPOU5F1. An inner cluster of cells was identified that included presumptive primitive endoderm cells (GATA6-positive) and presumptive epiblast (EPI) cells. The 5-20 treatment resulted in a significantly lower number of presumptive EPI-lineage cells than the 0-20 treatment did.GATA6-positive cells appeared to be allocated to the primitive endoderm independent of the formation of an inner cell mass, as was previously hypothesized for equine embryos. These data demonstrate that equine blastocyst development is not dependent on high glucose concentrations during early culture; rather, environmental glucose may affect cell allocation. They also present the first analysis of cell lineage allocation inin vitro-fertilized equine blastocysts. These findings expand our understanding of the factors that affect embryo development in the horse.



Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 597-604 ◽  
Author(s):  
K. Hardy ◽  
A.H. Handyside ◽  
R.M. Winston

The development of 181 surplus human embryos, including both normally and abnormally fertilized, was observed from day 2 to day 5, 6 or 7 in vitro. 63/149 (42%) normally fertilized embryos reached the blastocyst stage on day 5 or 6. Total, trophectoderm (TE) and inner cell mass (ICM) cell numbers were analyzed by differential labelling of the nuclei with polynucleotide-specific fluorochromes. The TE nuclei were labelled with one fluorochrome during immunosurgical lysis, before fixing the embryo and labelling both sets of nuclei with a second fluorochrome (Handyside and Hunter, 1984, 1986). Newly expanded normally fertilized blastocysts on day 5 had a total of 58.3 +/− 8.1 cells, which increased to 84.4 +/− 5.7 and 125.5 +/− 19 on days 6 and 7, respectively. The numbers of TE cells were similar on days 5 and 6 (37.9 +/− 6.0 and 40.3 +/− 5.0, respectively) and then doubled on day 7 (80.6 +/− 15.2). In contrast, ICM cell numbers doubled between days 5 and 6 (20.4 +/− 4.0 and 41.9 +/− 5.0, respectively) and remained virtually unchanged on day 7 (45.6 +/− 10.2). There was widespread cell death in both the TE and ICM as evidenced by fragmenting nuclei, which increased substantially by day 7. These results are compared with the numbers of cells in morphologically abnormal blastocysts and blastocysts derived from abnormally fertilized embryos. The nuclei of arrested embryos were also examined. The number of TE and ICM cells allocated in normally fertilized blastocysts appears to be similar to the numbers allocated in the mouse. Unlike the mouse, however, the proportion of ICM cells remains higher, despite cell death in both lineages.



Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1272 ◽  
Author(s):  
Muhammad Idrees ◽  
Lianguang Xu ◽  
Seok-Hwan Song ◽  
Myeong-Don Joo ◽  
Kyeong-Lim Lee ◽  
...  

This study was aimed to investigate the role of SHP2 (Src-homology-2-containing phosphotyrosine phosphatase) in intricate signaling networks invoked by bovine oocyte to achieve maturation and blastocyst development. PTPN11 (Protein Tyrosine Phosphatase, non-receptor type 11) encoding protein SHP2, a positive transducer of RTKs (Receptor Tyrosine Kinases) and cytokine receptors, can play a significant role in bovine oocyte maturation and embryo development, but this phenomenon has not yet been explored. Here, we used different growth factors, cytokines, selective activator, and a specific inhibitor of SHP2 to ascertain its role in bovine oocyte developmental stages in vitro. We found that SHP2 became activated by growth factors and cytokines treatment and was highly involved in the activation of oocyte maturation and embryo development pathways. Activation of SHP2 triggered MAPK (mitogen-activated protein kinases) and PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) signaling cascades, which is not only important for GVBD (germinal vesical breakdown) induction but also for maternal mRNA translation. Inhibition of phosphatase activity of SHP2 with PHPS1 (Phenylhydrazonopyrazolone sulfonate 1) reduced oocytes maturation as well as bovine blastocyst ICM (inner cell mass) volume. Supplementation of LIF (Leukemia Inhibitory Factor) to embryos showed an unconventional direct relation between p-SHP2 and p-STAT3 (Signal transducer and activator of transcription 3) for blastocyst ICM development. Other than growth factors and cytokines, cisplatin was used to activate SHP2. Cisplatin activated SHP2 modulate growth factors effect and combine treatment significantly enhanced quality and rate of developed blastocysts.



2016 ◽  
Vol 28 (2) ◽  
pp. 137
Author(s):  
Y. Liu ◽  
A. Lucas-Hahn ◽  
B. Petersen ◽  
R. Li ◽  
D. Hermann ◽  
...  

Conventional “Dolly”-based cloned (CNT) embryos maintain zona pellucida and can be transferred early in development. Handmade cloned (HMC) embryos are zona free and are cultured to later stages for transfer. We have shown differences between HMC and CNT embryos (Rep. Fert. Dev. 26, 123), and both in vitro culture and cloning method (NT) are associated with alterations in histone acetylation. More studies are needed to clarify whether CNT and HMC embryos differ in epigenetic profiles due to NT method or culture condition. Here we investigated histone acetylation profile of NT embryos produced by CNT or HMC with or without 5 to 6 days in vitro culture, emphasising quality and gene expression in resulting embryos. Both NT methods were performed on Day 0 (D0) with same oocyte batch, donor cells, and culture medium (CNT in group, HMC in well of well). On D0, 5, and 6 after CNT (Clon. Stem Cells 10, 355) or HMC (Zygote 20, 61), all developed embryos of all morphological qualities were collected for immunostaining of H3K18ac, and on D0 and 6 for mRNA expression of the genes KAT2A/2B, EP300, HDAC1/2, DNMT1o/s, and GAPDH. Embryo quality was evaluated normal (clear inner cell mass, high cell number, no fragments) or bad (no clear inner cell mass, low cell number, fragments). Cell numbers per blastocyst were counted on D5 and 6. Differences in cell number and H3K18ac level between different groups and days were analysed by ANOVA; gene expression data were analysed by GLM (SAS version 9.3, SAS Institute Inc., Cary, NC, USA). Embryo development rates of both NT methods were reported previously (Rep. Fert. Dev. 26, 123). On D5 and 6, all HMC embryos were evaluated as normal, but the CNT group contained both normal and bad embryos. Regarding cell numbers (Table 1), on D5 there was no difference between normal CNT and HMC embryos, but numbers were lower in CNT bad embryos. On D6 the blastocyst cell number was lower in both normal and bad CNT embryos compared with HMC. Regarding H3K18ac levels (Table 1), no differences were found on D5 between normal CNT and HMC embryos, but on D6 both CNT normal and bad embryos had higher H3K18ac level compared with HMC. On D0, no difference was found in mRNA expression of all 8 genes. On D6, KAT2A expression was slight increased (1.8-fold) in CNT compared with HMC embryos (P < 0.05). In conclusion, no differences were found between CNT and HMC embryos after completed NT procedure (D0) or after 5 days in vitro culture. However, differences in quality (cell number and H3K18ac) and gene expression between the 2 NT methods were observed when blastocyst expansion was initiated (D6). Thus, the 2 NT methods seem to produce embryos of similar quality, which is maintained over 5 days in vitro culture, but thereafter gene expression and histone acetylation are more active in CNT embryos. Table 1.Cell number and H3K18ac level1



2017 ◽  
Vol 29 (1) ◽  
pp. 182
Author(s):  
S. M. Bernal-Ulloa ◽  
A. Lucas-Hahn ◽  
P. Aldag ◽  
D. Herrmann ◽  
U. Baulain ◽  
...  

Oocyte culture in the presence of the nonspecific competitive phosphodiesterase inhibitor caffeine has been reported to increase developmental capacity of oocytes in different mammalian species. Here, we evaluated the effects of caffeine supplementation during the final phase of in vitro maturation (IVM) on developmental rates and blastocyst cell numbers. Bovine ovaries were collected from a local abattoir. A total of 1142 cumulus-oocyte-complexes were obtained by slicing. Cumulus-oocyte complexes were either in vitro matured for 24 h (Standard) or matured for 20 h followed by additional culture for 6 h in fresh IVM medium supplemented with 10 mM caffeine (Caffeine 6 h). In vitro fertilization was performed for 19 h using frozen-thawed sperm from 2 different bulls. After IVF, presumptive zygotes were cultured in vitro for 8 days until the blastocyst stage. Cleavage and blastocyst rates were evaluated 3 and 8 days after IVF, respectively. Expanded blastocysts from the different treatments were submitted to differential staining. SAS/STAT software (SAS Institute Inc., Cary, NC, USA) was used to evaluate cleavage and blastocyst rates using the Glimmix procedure and blastocyst cell numbers were compared using the linear model procedure. Cleavage rates were lower using caffeine for bull B and blastocyst production decreased for bull A. Caffeine treatment increased inner cell mass (ICM) number for bull B and decreased trophectoderm (TE) and total cell numbers for bull A. However, similar TE and total cells were obtained for bull B (Table 1; P < 0.05). Results show that developmental competence can be affected by caffeine supplementation at the final phase of IVM probably due to oocyte-sperm interaction changes. Table 1. In vitro developmental competence of oocytes cultured with caffeine at the end of IVM



2021 ◽  
Vol 2 ◽  
Author(s):  
Lydia K. Wooldridge ◽  
Alan D. Ealy

Previous work determined that bovine interleukin-6 (IL6) increases inner cell mass (ICM), primitive endoderm (PE), and total cell number in in vitro produced (IVP) bovine blastocysts. Another IL6 family member, leukemia inhibitory factor (LIF), has the potential to produce the same effects of IL6 due to the presence of its receptor in bovine blastocysts. We compared the abilities of LIF and IL6 to increase ICM cell numbers in day 7, 8, and 9 IVP bovine blastocysts. Supplementation with 100 ng/ml LIF from day 5 onward improved blastocyst formation rates on days 7 and 8 similar to what was observed when supplementing 100 ng/ml IL6. However, LIF supplementation did not cause an increase in ICM numbers like was observed after supplementing IL6. On day 9, increases in PE cell numbers were detected after LIF supplementation, but 300 ng/ml LIF was required to achieve the same effect on PE numbers that was observed by providing 100 ng/ml IL6. Collectively, these results show that LIF can mimic at least some of the effects of IL6 in bovine blastocyst.



2004 ◽  
Vol 16 (2) ◽  
pp. 186
Author(s):  
J.O. Gjørret ◽  
P. Maddox-Hyttel

Regulation of apoptosis may be affected by factors during preimplantation development, and this is possibly related to embryo developmental potential. Here we investigate differences in the incidence of apoptotic nuclei in Day 7 bovine blastocysts produced by two different in vivo and three different in vitro methods. In vivo embryos were produced either by a regular superovulation procedure (reg group; n=29; Laurincik et al., 2003, Mol. Reprod. Dev. 65, 73–85), or by postponement of the LH surge (pp group; n=35; van de Leemput et al., 2001, Therio. 55, 573–592). In vitro embryos were derived from systems using either co-culture (cc group; n=30, Avery and Greve 2000, Mol. Reprod. Dev. 55, 438–445), or culture in synthetic oviduct fluid (SOF) with (S+group; n=35) or without serum (S− group; n=38; Holm et al., 1999, Theriogenology, 52, 683–700). Embryos were collected at approx. 168h post ovulation/insemination and subjected to chromatin staining and detection of DNA degradation by TUNEL reaction. The total number of nuclei, number of nuclei displaying apoptotic morphology (+M), number of nuclei displaying TUNEL reaction (+T), and number of nuclei displaying both markers simultaneously (M&amp;T) were scored according to J.O. Gjørret et al. (2003 Biol. Reprod. 69. in press). Only M&amp;T nuclei were regarded as apoptotic, and +M, +T, and apoptotic (M&amp;T) indices (%) were calculated for the trophoblast (tb), inner cell mass (i) and the total blastocysts (t) in each group. Significant differences were observed for all parameters when all groups were compared (ANOVA, P ranging from 0.024 to&lt;0.0001). Highest number of total nuclei were observed in the S+ group, whereas the lowest indices were observed in the pp group, which had significant lower indices in the i and t than in the reg., S+ and S− groups P&lt;0.05; Tukey’s post test for ANOVA). Highest indices were generally observed in the S− group. The results demonstrate that not only embryo cell numbers but also incidences of apoptotic markers are affected by the mode of production. However, in Day 7 bovine blastocysts high cell number is not consistent with a low incidence of apoptosis. Even though cell numbers appeared comparable in the two in vivo groups, their incidences of apoptosis were different, and the reg group displayed indices comparable to the in vitro groups, highlighting the importance of ovulation protocols when in vivo embryos are used as reference material in general. Table 1



Sign in / Sign up

Export Citation Format

Share Document