37 Healthy Foals Produced Using Bone Marrow-Mesenchymal Stem Cells as Nuclear Donors in Horse Cloning

2018 ◽  
Vol 30 (1) ◽  
pp. 158
Author(s):  
R. Olivera ◽  
L. Moro ◽  
R. Jordan ◽  
C. Luzzani ◽  
S. Miriuka ◽  
...  

Somatic cell nuclear transfer efficiency is based on the capacity of the donor cell to be reset and reprogrammed to an embryonic state. So, the less differentiated the donor cells are, the more easily they could be reprogrammed by a recipient cytoplasm. Failures on appropriate nuclear reprogramming frequently lead to abnormalities associated with the placenta, umbilical cord, birthweight, and limbs. In the present study, we evaluated the efficiency of bone marrow mesenchymal stem cells (BM-MSC) compared with adult fibroblasts (AF) as nuclear donors in horse cloning and evaluated both in vitro and in vivo development of the embryos generated. Moreover, we focused on comparing the health of the foals generated and on the presence of anatomical abnormalities in foals produced from the different treatments. Embryos produced by AI, recovered by uterine flushing, and transferred to recipient mares were used as controls. All variables were analysed by Fisher test (P < 0.05). The cloning procedure was performed according to Olivera et al. (2016 PLoS One 11, e0164049, 10.1371/journal.pone.0164049). Both cleavage and blastocyst rates were higher when MSC were used as nuclear donors (P < 0.05). Cleavage rates were 85.6% (3875/4527) v. 90.2% (3095/3432) and blastocyst rates were 10.9% (492/4527) and 18.1% (622/3432) for AF and MSC groups, respectively. In the AF group, 476 blastocysts were transferred to recipient mares (232 transfers), and in the MSC group, 594 blastocysts were transferred 297 transfers). In the AI control group, 88 embryos were transferred. Pregnancies were diagnosed by transrectal ultrasonography 15 days after embryo transfer in all the groups. Pregnancy rates were similar between both cloning groups (41/232, 17.7% and 37/297, 12.5%for AF and MSC, respectively), but higher in the AI group (71/88, 80.7%). However, significant differences were observed in the birth of viable offsprings among the cloning groups. Despite similar rates of foal delivery (AF, 17/41, 41.5%; MSC, 21/37, 56.7%), a higher proportion of viable foals were obtained from the MSC group (20/37, 54.1%) compared with the AF group (9/41, 22%; P < 0.05). Surprisingly, as in the AI group (63/63, 100%), all of the viable foals obtained using MSC (20/20, 100%) were considered normal and did not show abnormalities associated with cloning. In contrast, in the AF group, only 4/9 (44.4%) were considered normal foals. The defects present in the other 5 foals were related to flexural and angular limb deformities and umbilical cord malformations. These were corrected rapidly with standard treatments or, in the case of the umbilical cords, minor surgery. This study shows for the first time that BM-MSC can be used as nuclear donors in horse cloning and that the foals obtained are as healthy as those produced by AI, showing no abnormalities related to deficiencies in nuclear reprogramming.

2019 ◽  
Vol 7 (1) ◽  
pp. 362-372 ◽  
Author(s):  
Shuhao Liu ◽  
Yang Liu ◽  
Libo Jiang ◽  
Zheng Li ◽  
Soomin Lee ◽  
...  

BMP-2-induced migration of BMSCs can be inhibited by silencing CDC42 in vitro and in vivo.


2021 ◽  
Author(s):  
meng li ◽  
ning yang ◽  
li hao ◽  
wei zhou ◽  
lei li ◽  
...  

Abstract ObjectivesSteroid-induced osteoporosis (SIOP) is a secondary osteoporosis, which is a systemic bone disease characterized by low bone mass, bone microstructure damage, increased bone fragility, and easy fracture. However, the specific mechanism remains unclear. Glucocorticoid-induced death of osteoblasts and bone marrow mesenchymal stem cells (BMSCs) is an important factor in SIOP. Ferroptosis is an iron-dependent programmed cell death that differs from apoptosis, cell necrosis, and autophagy, which can be induced by many factors. Herein, we aimed to explore whether glucocorticoids (GCs) cause ferroptosis in BMSCs and determine possible treatment pathways and mechanisms of action. Melatonin (MT), a hormone secreted by the pineal gland, displays strong antioxidant abilities to scavenge free radicals and alleviates ferroptosis in many tissues and organs. MethodsIn this study, we used high-dose dexamethasone (DEX) to observe whether glucocorticoids induced ferroptosis in BMSCs. We then assessed whether MT can inhibit the ferroptotic pathway, thereby providing early protection against GC-induced SIOP, and investigated the signaling pathways involved.ResultsIn vitro experiments showed that MT intervention significantly improved GC-induced ferroptosis in BMSCs and significantly improved SIOP in vivo. Pathway analysis showed that MT improves ferroptosis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. MT upregulates expression of PI3K, which is an important regulator of ferroptosis resistance. PI3K activators mimic the anti-ferroptosis effect of MT, but after blocking the PI3K pathway, the effect of MT is weakened. Obviously, MT can protect against SIOP induced by GC. Notably, even after GC-induced ferroptosis begins, MT can confer protection against SIOP. ConclusionOur research confirms that GC-induced ferroptosis is closely related to SIOP. Melatonin can inhibit ferroptosis by activating the PI3K-AKT-mTOR signaling pathway, thereby reducing the occurrence of steroid-induced osteoporosis. Therefore, MT may provide a novel strategy for preventing and treating SIOP.


2020 ◽  
Vol 8 (21) ◽  
pp. 4680-4693
Author(s):  
Jirong Yang ◽  
Yumei Xiao ◽  
Zizhao Tang ◽  
Zhaocong Luo ◽  
Dongxiao Li ◽  
...  

The different negatively charged microenvironments of collagen hydrogels affect the protein adsorption, cell morphology, and chondrogenic differentiation of BMSCs in vitro and in vivo.


Nanomedicine ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 273-288 ◽  
Author(s):  
Chun Liu ◽  
Yun Li ◽  
Zhijian Yang ◽  
Zhiyou Zhou ◽  
Zhihao Lou ◽  
...  

The effectiveness of mesenchymal stem cells (MSC) in the treatment of cartilage diseases has been demonstrated to be attributed to the paracrine mechanisms, especially the mediation of exosomes. But the exosomes derived from unsynchronized MSCs may be nonhomogeneous and the therapeutic effect varies between samples. Aim: To produce homogeneous and more effective exosomes for the regeneration of cartilage. Materials & methods: In this study we produced specific exosomes from bone marrow MSCs (BMSC) through kartogenin (KGN) preconditioning and investigated their performance in either in vitro or in vivo experiments. Results & conclusion: The exosomes derived from KGN-preconditioned BMSCs (KGN-BMSC-Exos) performed more effectively than the exosomes derived from BMSCs (BMSC-Exos). KGN preconditioning endowed BMSC-Exos with stronger chondral matrix formation and less degradation.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ran Zhang ◽  
Xuewen Li ◽  
Yao Liu ◽  
Xiaobo Gao ◽  
Tong Zhu ◽  
...  

Biocompatible scaffolding materials play an important role in bone tissue engineering. This study sought to develop and characterize a nano-hydroxyapatite (nHA)/collagen I (ColI)/multi-walled carbon nanotube (MWCNT) composite scaffold loaded with recombinant bone morphogenetic protein-9 (BMP-9) for bone tissue engineering by in vitro and in vivo experiments. The composite nHA/ColI/MWCNT scaffolds were fabricated at various concentrations of MWCNTs (0.5, 1, and 1.5% wt) by blending and freeze drying. The porosity, swelling rate, water absorption rate, mechanical properties, and biocompatibility of scaffolds were measured. After loading with BMP-9, bone marrow mesenchymal stem cells (BMMSCs) were seeded to evaluate their characteristics in vitro and in a critical sized defect in Sprague-Dawley rats in vivo. It was shown that the 1% MWCNT group was the most suitable for bone tissue engineering. Our results demonstrated that scaffolds loaded with BMP-9 promoted differentiation of BMMSCs into osteoblasts in vitro and induced more bone formation in vivo. To conclude, nHA/ColI/MWCNT scaffolds loaded with BMP-9 possess high biocompatibility and osteogenesis and are a good candidate for use in bone tissue engineering.


2014 ◽  
Vol 33 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Koji Otabe ◽  
Hiroyuki Nakahara ◽  
Akihiko Hasegawa ◽  
Tetsuya Matsukawa ◽  
Fumiaki Ayabe ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0148777 ◽  
Author(s):  
Yusuke Nakagawa ◽  
Takeshi Muneta ◽  
Koji Otabe ◽  
Nobutake Ozeki ◽  
Mitsuru Mizuno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document