55 Identification of microRNAs associated with sex determination in bovine amniotic fluid and maternal blood plasma

2020 ◽  
Vol 32 (2) ◽  
pp. 153 ◽  
Author(s):  
J. M. Sánchez ◽  
I. Gómez-Redondo ◽  
J. A. Browne ◽  
B. Planells ◽  
A. Gutiérrez-Adán ◽  
...  

In most eutherian mammals, sex determination is the process through which a bipotential gonad (also known as genital ridges) develops into a testis or ovary depending on the sex chromosome content of the embryo, specifically by the presence of the SRY/Sry gene (sex-determining region of the Y chromosome). MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression and are involved in diverse functional roles including development, differentiation, apoptosis, and immunity. We hypothesised that the expression of miRNAs in amniotic fluid (AF) and maternal blood plasma (MP) would be affected by the sex of the embryo around the time of sex determination. Amniotic fluid and MP were collected from 6 crossbred beef pregnant heifers (3 carrying a single male and 3 carrying a single female embryo) following slaughter on Day 39 (when the peak of SRY expression occurs in cattle). All heifers had been synchronized and inseminated with semen from the same beef bull. A total of 12 samples (6 AF and 6 MP) were profiled using the miRCURY LNA miRNA Serum/Plasma Focus PCR Panel (Qiagen; 179 assays targeting relevant miRNAs). Data were analysed by GeneGlobe Data Analysis Center (Qiagen). A threshold cycle cut-off of 35 was applied and data were analysed using an unpaired t-test. Gene ontology enrichment analysis was performed using the WebGestaltR package to explore the possible functions of differentially expressed (DE) miRNAs. In this study, DE miRNAs were identified in male vs. female AF (n=5; 3 upregulated and 2 downregulated; P<0.05) and MP (n=57; 54 upregulated and 3 downregulated; P<0.05). Although no enrichment was detected for DE miRNAs in AF (in either sex) or in MP in heifers carrying a female embryo, 37 biological processes were enriched by DE miRNAs in MP of heifers carrying a male embryo (false discovery rate<0.05). Interestingly, the top five most enriched biological processes were male gonad development, development of primary male sexual characteristics, signal transduction in absence of ligand, actomyosin structure organisation, and male sex differentiation, suggesting a potential role of these miRNAs in reproductive traits. Results from this study highlight unique aspects of sex determination in cattle such as the role of miRNAs in gonad development. Moreover, although it is well known that AF provides a protective space around the developing embryo/fetus that allows its movement and growth; here we provide evidence suggesting that its components may play important roles in fetal development. Finally, miRNAs in MP may offer new opportunities to investigate biomarkers for early prediction of embryo/fetal sex in commercial practice. This research was supported by the Science Foundation Ireland (13/IA/1983) and the European Union H2020 Marie Sklodowska-Curie Innovative Training Network project Biology and Technology of Reproductive Health - REP-BIOTECH - 675526.

Author(s):  
José María Sánchez ◽  
Isabel Gómez-Redondo ◽  
John A Browne ◽  
Benjamín Planells ◽  
Alfonso Gutiérrez-Adán ◽  
...  

Abstract MicroRNAs (miRNAs), as gene expression regulators, may play a critical role during the sex determination process. We hypothesised that the expression of miRNAs in amniotic fluid (AF) and maternal blood plasma (MP) during this process would be affected by the sex of the embryo. Amniotic fluid and MP were collected from six pregnant heifers (3 carrying a single male and 3 a single female embryo) following slaughter on Day 39 post insemination, coinciding with the peak of SRY expression. Samples (6 AF and 6 MP) were profiled using a miRNA Serum/Plasma Focus PCR Panel. Differentially expressed (DE) miRNAs were identified in AF (n = 5) and associated MP (n = 56) of male vs female embryos (P < 0.05). Functional analysis showed that inflammatory and immune response were amongst the 13 biological processes enriched by miRNAs DE in MP in the male group (FDR < 0.05), suggesting that these sex-dependent DE miRNAs may be implicated in modulating the receptivity of the dam to a male embryo. Further, we compared the downstream targets of the sex-dependent DE miRNAs detected in MP with genes previously identified as DE in male vs female genital ridges. The analyses revealed potential targets that might be important during this developmental stage such as SHROOM2, DDX3Y, SOX9, SRY, PPP1CB, JARID2, USP9X, KDM6A, and EIF2S3. Results from this study highlight novel aspects of sex determination and embryo-maternal communication in cattle such as the potential role of miRNAs in gonad development as well as in the modulation of the receptivity of the dam to a male embryo.


2017 ◽  
Vol 241 ◽  
pp. 100-107 ◽  
Author(s):  
Sudhanshu Shekhar ◽  
Surbhi Sood ◽  
Sadiya Showkat ◽  
Christy Lite ◽  
Anjalakshi Chandrasekhar ◽  
...  

2017 ◽  
Vol 284 (1854) ◽  
pp. 20162806 ◽  
Author(s):  
Jessica K. Abbott ◽  
Anna K. Nordén ◽  
Bengt Hansson

Many separate-sexed organisms have sex chromosomes controlling sex determination. Sex chromosomes often have reduced recombination, specialized (frequently sex-specific) gene content, dosage compensation and heteromorphic size. Research on sex determination and sex chromosome evolution has increased over the past decade and is today a very active field. However, some areas within the field have not received as much attention as others. We therefore believe that a historic overview of key findings and empirical discoveries will put current thinking into context and help us better understand where to go next. Here, we present a timeline of important conceptual and analytical models, as well as empirical studies that have advanced the field and changed our understanding of the evolution of sex chromosomes. Finally, we highlight gaps in our knowledge so far and propose some specific areas within the field that we recommend a greater focus on in the future, including the role of ecology in sex chromosome evolution and new multilocus models of sex chromosome divergence.


2021 ◽  
pp. 1-11
Author(s):  
Isabel Gómez-Redondo ◽  
Benjamín Planells ◽  
Paula Navarrete ◽  
Alfonso Gutiérrez-Adán

During the process of sex determination, a germ-cell-containing undifferentiated gonad is converted into either a male or a female reproductive organ. Both the composition of sex chromosomes and the environment determine sex in vertebrates. It is assumed that transcription level regulation drives this cascade of mechanisms; however, transcription factors can alter gene expression beyond transcription initiation by controlling pre-mRNA splicing and thereby mRNA isoform production. Using the key time window in sex determination and gonad development in mice, it has been reported that new non-transcriptional events, such as alternative splicing, could play a key role in sex determination in mammals. We know the role of key regulatory factors, like WT1(+/–KTS) or FGFR2(b/c) in pre-mRNA splicing and sex determination, indicating that important steps in the vertebrate sex determination process probably operate at a post-transcriptional level. Here, we discuss the role of pre-mRNA splicing regulators in sex determination in vertebrates, focusing on the new RNA-seq data reported from mice fetal gonadal transcriptome.


2021 ◽  
Author(s):  
Tamanna Yasmin ◽  
Phil Grayson ◽  
Margaret F. Docker ◽  
Sara V. Good

The sea lamprey genome undergoes programmed genome rearrangement (PGR) in which ~20% is jettisoned from somatic cells soon after fertilization. Although the role of PGR in embryonic development has been studied, the role of the germline-specific region (GSR) in gonad development is unknown. We analysed RNA-sequence data from 28 sea lamprey gonads sampled across life-history stages, generated a genome-guided de novo superTransciptome with annotations, and identified genes in the GSR. We found that the 638 genes in the GSR are enriched for reproductive processes, exhibit 36x greater odds of being expressed in testes than ovaries, show little evidence of conserved synteny with other chordates, and most have putative paralogues in the GSR and/or somatic genomes. Further, several of these genes play known roles in sex determination and differentiation in other vertebrates. We conclude that the GSR of sea lamprey plays an important role in testicular differentiation and potentially sex determination.


2012 ◽  
Vol 8 (5) ◽  
pp. 787-789 ◽  
Author(s):  
Clemens Küpper ◽  
Jakob Augustin ◽  
Scott Edwards ◽  
Tamás Székely ◽  
András Kosztolányi ◽  
...  

Two models, Z Dosage and Dominant W , have been proposed to explain sex determination in birds, in which males are characterized by the presence of two Z chromosomes, and females are hemizygous with a Z and a W chromosome. According to the Z Dosage model, high dosage of a Z-linked gene triggers male development, whereas the Dominant W model postulates that a still unknown W-linked gene triggers female development. Using 33 polymorphic microsatellite markers, we describe a female triploid Kentish plover Charadrius alexandrinus identified by characteristic triallelic genotypes at 14 autosomal markers that produced viable diploid offspring. Chromatogram analysis showed that the sex chromosome composition of this female was ZZW. Together with two previously described ZZW female birds, our results suggest a prominent role for a female determining gene on the W chromosome. These results imply that avian sex determination is more dynamic and complex than currently envisioned.


2013 ◽  
Vol 132 (6) ◽  
pp. 757-760 ◽  
Author(s):  
Waldemar Uszyński ◽  
Ewa Żekanowska ◽  
Mieczysław Uszyński ◽  
Andrzej Żyliński ◽  
Jarosław Kuczyński

1987 ◽  
Vol 65 (6) ◽  
pp. 1120-1124 ◽  
Author(s):  
David W. Clarke ◽  
John Patrick ◽  
Mary E. Wlodek ◽  
Graeme N. Smith ◽  
Bryan Richardson ◽  
...  

The objective of this study was to determine whether fetal urinary excretion is a major route of ethanol transfer into the amniotic fluid surrounding the fetus following maternal administration of ethanol. Conscious instrumented pregnant ewes between 130 and 137 days' gestation (term, 147 days) with (n = 3) or without (n = 3) a catheter in the fetal bladder were administered 1 g ethanol/kg maternal body weight as a 1-h maternal intravenous infusion. Maternal blood, fetal blood, and amniotic fluid samples were collected at selected times, and fetal urine was collected continuously from the bladder-cannulated fetus during the 14-h study for the determination of ethanol concentrations. Fetal urinary excretion of ethanol occurred, and the total amount of ethanol excreted represented 0.30 ± 0.07 (SD)% of the maternal ethanol dose. The renal clearance of ethanol by the fetus was 0.43 ± 0.06 mL/min. The pharmacokinetics of ethanol in the maternal–fetal unit and the amniotic fluid for the bladder-cannulated fetal preparation were similar to the data for the nonbladder-cannulated preparation. The data indicate that fetal urinary excretion of ethanol is a secondary route of ethanol transfer into the amniotic fluid. It would appear that diffusion of ethanol across membranes from the maternal and fetal circulations is a major route of ethanol transfer into this intrauterine compartment.


Sign in / Sign up

Export Citation Format

Share Document