Economically viable land regeneration in Central Queensland and improved water quality outcomes for the Great Barrier Reef

2011 ◽  
Vol 33 (3) ◽  
pp. 267 ◽  
Author(s):  
M. Star ◽  
P. Donaghy ◽  
J. Rolfe

The impact of excessive sediment loads entering into the Great Barrier Reef lagoon has led to increased awareness of land condition in grazing lands. Improved ground cover and land condition have been identified as two important factors in reducing sediment loads. This paper reports the economics of land regeneration using case studies for two different land types in the Fitzroy Basin. The results suggest that for sediment reduction to be achieved from land regeneration of more fertile land types (brigalow blackbutt) the most efficient method of allocating funds would be through extension and education. However for less productive country (narrow leaved ironbark woodlands) incentives will be required. The analysis also highlights the need for further scientific data to undertake similar financial assessments of land regeneration for other locations in Queensland.

1990 ◽  
Vol 41 (1) ◽  
pp. 1 ◽  
Author(s):  
IF Somers

The potentially detrimental side-effects of prawn trawling are coming under increasing scrutiny in Australian waters, particularly in such ecologically sensitive areas as Queensland's Great Barrier Reef, and various restrictive measures are being suggested. Before changes are imposed on the prawning industry, the effects of trawling on the target prawn species and the long-term management of these effects need to be fully understood. Using a simulation model of a simplified prawn fishery, this paper describes the basis for the current regulatory mechanisms for Australian's prawn fisheries, in particular the manipulation of both the level and pattern of fishing effort. It is shown that even in moderately fished stocks, the fishery manager has several options, such as seasonal and nursery area closures, that are consistent with the goal of minimizing the impact of prawn trawling, while in no way penalizing the industry economically. With these in mind, possible ways of resolving or reducing the conflict with groups outside the prawning industry are discussed.


2019 ◽  
Vol 11 (10) ◽  
pp. 1211 ◽  
Author(s):  
Fardin Seifi ◽  
Xiaoli Deng ◽  
Ole Baltazar Andersen

The latest satellite and in situ data are a fundamental source for tidal model evaluations. In this work, the satellite missions TOPEX/Poseidon, Jason-1, Jason-2 and Sentinel-3A, together with tide gauge data, were used to investigate the performance of recent regional and global tidal models over the Great Barrier Reef, Australia. Ten models, namely, TPXO8, TPXO9, EOT11a, HAMTIDE, FES2012, FES2014, OSUNA, OSU12, GOT 4.10 and DTU10, were considered. The accuracy of eight major tidal constituents (i.e., K1, O1, P1, Q1, M2, S2, N2 and K2) and one shallow water constituent (M4) were assessed based on the analysis of sea-level observations from coastal tide gauges and altimetry data (TOPEX series). The outcome was compared for four different subregions, namely, the coastline, coastal, shelf and deep ocean zones. Sea-level anomaly data from the Sentinel-3A mission were corrected using the tidal heights predicted by each model. The root mean square values of the sea level anomalies were then compared. According to the results, FES2012 compares more favorably to other models with root mean square (RMS) values of 10.9 cm and 7.7 cm over the coastal and shelf zones, respectively. In the deeper sections, the FES2014 model compares favorably at 7.5 cm. In addition, the impact of sudden fluctuations in bottom topography on model performances suggest that a combination of bathymetric variations and proximity to the coast or islands contributes to tidal height prediction accuracies of the models.


2004 ◽  
Vol 15 (3) ◽  
pp. 279-289 ◽  
Author(s):  
P. J. Toscas ◽  
M. J. Faddy ◽  
C. Y. Burridge

2014 ◽  
Vol 36 (1) ◽  
pp. 67 ◽  
Author(s):  
Rebecca Bartley ◽  
Jeff P. Corfield ◽  
Aaron A. Hawdon ◽  
Anne E. Kinsey-Henderson ◽  
Brett N. Abbott ◽  
...  

Excess sediments from agricultural areas are having a detrimental impact on the Great Barrier Reef, and threaten the long-term viability of rangeland grazing. Changes to grazing management have been promoted as a mechanism for reducing excess sediment loss from grazed rangelands. This paper summarises the results of a 10-year study (2002–11) on a property in the Burdekin catchment that investigated the role of reduced stocking rates and rotational wet season resting on hill-slope and catchment runoff and sediment yields. Ground cover and pasture biomass were evaluated using on-ground surveys and remote sensing. During this study, average ground cover increased from ~35 to ~80% but pasture biomass was low due to the dominance of Bothriochloa pertusa (77% of composition). The percentage of deep-rooted perennial species increased from ~7% of pasture composition in 2002 to ~15% in 2011. This is still considerably lower than the percentage that occupied this property in 1979 (~78%). The increased ground cover resulted in progressively lower hill-slope runoff coefficients for the first event in each wet season, but annual catchment runoff did not respond significantly to the increasing ground cover during the study. Hill-slope and catchment sediment concentrations did decline with the increased ground cover, yet catchment sediment yields increased proportionally to annual runoff due to the contribution of sub-surface (scald, gully and bank) erosion. This study has demonstrated that changes to grazing management can reduce sediment concentrations leaving B. pertusa-dominated pastures, as B. pertusa is an effective controller of surface erosion. To further reduce the runoff that is fuelling gully and bank erosion, the proportion of deep-rooted native perennial grasses needs to be increased. It is argued that more than 10 years will be required to restore healthy eco-hydrological function to these previously degraded and low productivity rangelands. Even longer timescales will be needed to meet current targets for water quality.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2179
Author(s):  
Vahid Rafiei ◽  
Afshin Ghahramani ◽  
Duc-Anh An-Vo ◽  
Shahbaz Mushtaq

Study region: North Johnstone catchment, located in the north east of Australia. The catchment has wet tropical climate conditions and is one of the major sediment contributors to the Great Barrier Reef. Study focus: The purpose of this paper was to identify soil erosion hotspots through simulating hydrological processes, soil erosion and sediment transport using the Soil and Water Assessment Tool (SWAT). In particular, we focused on predictive uncertainty in the model evaluations and presentations—a major knowledge gap for hydrology and soil erosion modelling in the context of Great Barrier Reef catchments. We carried out calibration and validation along with uncertainty analysis for streamflow and sediment at catchment and sub-catchment scales and investigated details of water balance components, the impact of slope steepness and spatio-temporal variations on soil erosion. The model performance in simulating actual evapotranspiration was compared with those of the Australian Landscape Water Balance (AWRA-L) model to increase our confidence in simulating water balance components. New hydrological insights for the region: The spatial locations of soil erosion hotspots were identified and their responses to different climatic conditions were quantified. Furthermore, a set of land use scenarios were designed to evaluate the effect of reforestation on sediment transport. We anticipate that protecting high steep slopes areas, which cover a relatively small proportion of the catchment (4–9%), can annually reduce 15–26% sediment loads to the Great Barrier Reef.


2017 ◽  
Vol 74 (11) ◽  
pp. 1950-1959 ◽  
Author(s):  
L. Richard Little ◽  
André E. Punt ◽  
Geoffrey N. Tuck ◽  
Bruce D. Mapstone

Simulation is used to evaluate the ability of a two-region, age-structured assessment model to provide accurate and precise estimates of stock status (i.e., the ratio of female spawning biomass to unfished female spawning biomass) for coral trout (Plectropomus leopardus) on the Great Barrier Reef (GBR), Australia. The model used to generate the simulated data used by the assessment model is a spatially complex age- and sex-structured population dynamics model that captures the protogynous nature of coral trout. Stock status is underestimated (negatively biased), with the extent of negative bias related to mis-specification of the breeding strategy of the target fish stock, the impact of the amount of larval connectivity among reefs, the number of reefs closed to fishing, as well as exploitation rates. The estimates of stock status were less negatively biased when fishery-independent index and age- and length-composition data were available from closed areas. The results will inform the development of management strategies for coral trout in the GBR and highlight the importance of basing evaluations of estimation and management performance on operating models that capture ecologically important processes such as metapopulation dynamics and protogynous life history.


2018 ◽  
Author(s):  
Lynne Eagle

Coverage of issues by news media is known to impact on both public perceptions and policy development aimed at addressing the featured issues. We examine the potential impact of news media coverage regarding the health and potential future of the World heritage-listed Great Barrier Reef, which is under multiple pressures, both natural and anthropogenic. We draw on the extant literature regarding the impact of news media coverage of other complex issues, linking to relevant, albeit limited theoretical concepts that have been applied to previous media studies. We find that media coverage is predominately sensationalized and negative, with the potential to reinforce perceptions that mitigation attempts will be ineffective and thus likely to inhibit future policy development. We discuss the need for a review of existing science communication models and strategies to reduce the knowledge-practice gap between scientists and policy makers, together with proactive strategies to counter negative news coverage.


Sign in / Sign up

Export Citation Format

Share Document