Persistence of bellyache bush (Jatropha gossypifolia L.) soil seed banks

2012 ◽  
Vol 34 (4) ◽  
pp. 429 ◽  
Author(s):  
Faiz F. Bebawi ◽  
Shane D. Campbell ◽  
Robert J. Mayer

Bellyache bush (Jatropha gossypifolia L.) is an invasive shrub that adversely impacts agricultural and natural systems of northern Australia. While several techniques are available to control bellyache bush, depletion of soil seed banks is central to its management. A 10-year study determined the persistence of intact and ant-discarded bellyache bush seeds buried in shade cloth packets at six depths (ranging from 0 to 40 cm) under both natural rainfall and rainfall-excluded conditions. A second study monitored changes in seedling emergence over time, to provide an indication of the natural rate of seed bank depletion at two sites (rocky and heavy clay) following the physical removal of all bellyache bush plants. Persistence of seed in the burial trial varied depending on seed type, rainfall conditions and burial depth. No viable seeds of bellyache bush remained after 72 months irrespective of seed type under natural rainfall conditions. When rainfall was excluded seeds persisted for much longer, with a small portion (0.4%) of ant-discarded seeds still viable after 120 months. Seed persistence was prolonged (>96 months to decline to <1% viability) at all burial depths under rainfall-excluded conditions. In contrast, under natural rainfall, surface located seeds took twice as long (70 months) to decline to 1% viability compared with buried seeds (35 months). No seedling emergence was observed after 58 months and 36 months at the rocky and heavy clay soil sites, respectively. These results suggest that the required duration of control programs on bellyache bush may vary due to the effect of biotic and abiotic factors on persistence of soil seed banks.

Weed Science ◽  
2020 ◽  
pp. 1-29
Author(s):  
Yonghuan Yue ◽  
Guili Jin ◽  
Weihua Lu ◽  
Ke Gong ◽  
Wanqiang Han ◽  
...  

Abstract Drunken horse grass [Achnatherum inebrians (Hance) Keng] is a perennial poisonous weed in western China. A comprehensive understanding of the ecological response of A. inebrians germination to environmental factors would facilitate the formulation of better management strategies for this weed. Experiments were conducted under laboratory conditions to assess the effects of various abiotic factors, including temperature, light, water, pH and burial depth, on the seed germination and seedling emergence of A. inebrians. The seeds germinated at constant temperatures of 15, 20, 25, 30, 35°C and in alternating-temperature regimes of 15/5, 20/10, 25/15, 30/20, 35/25, 40/30°C, and the seed germination percentages under constant and alternating temperatures ranged from 51% to 94% and 15% to 93%, respectively. Maximum germination occurred at a constant temperature of 25°C, and germination was prevented at 45/35°C. Light did not appear to affect seed germination. The germination percentage of seeds was more than 75% in the pH range of 5 to 10, with the highest germination percentage at pH 6. The seeds germinated at osmotic potentials of 0 MPa to -1.0 MPa, but decreasing osmotic potential inhibited germination, with no germination at -1.2MPa. After 21 d of low osmotic stress, the seeds that did not germinate after rehydration had not lost their vitality. The seedling emergence percentage was highest (90%) when seeds were buried at 1 cm but declined with increasing burial depth and no emergence at 9 cm. Deep tillage may be effective in limiting the seed germination and emergence of this species. The results of this study provide useful information on the conditions necessary for A. inebrians germination and provide a theoretical basis for science-based prediction, prevention and control of this species.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Ning Zhao ◽  
Qi Li ◽  
Wenlei Guo ◽  
Lele Zhang ◽  
Lu’an Ge ◽  
...  

Shortawn foxtail is an invasive grass weed infesting winter wheat and canola production in China. A better understanding of the germination ecology of shortawn foxtail would help to develop better control strategies for this weed. Experiments were conducted under laboratory conditions to evaluate the effects of various abiotic factors, including temperature, light, pH, osmotic stress, salt concentration, and planting depth, on seed germination and seedling emergence of shortawn foxtail. The results showed that the seed germination rate was greater than 90% over a wide range of constant (5 to 25C) and alternating (15/5 to 35/25C) temperatures. Maximum germination occurred at 20C or 25/15C, and no germination occurred at 35C. Light did not appear to have any effect on seed germination. Shortawn foxtail germination was 27% to 99% over a pH range of 4 to 10, and higher germination was obtained at alkaline pH values ranging from 7 to 10. Seed germination was sensitive to osmotic potential and completely inhibited at an osmotic potential of −0.6 MPa, but it was tolerant to salinity: germination even occurred at 200 mM NaCl (5%). Seedling emergence was highest (98%) when seeds were placed on the soil surface but declined with the increasing burial depth. No seedlings emerged when seeds were buried 6-cm deep. Deep tillage could be an effective measure to limit seed germination from increased burial depth. The results of this study will lead to a better understanding of the requirements for shortawn foxtail germination and emergence and will provide information that could contribute to its control.


2013 ◽  
Vol 31 (2) ◽  
pp. 267-279 ◽  
Author(s):  
E. Soltani ◽  
A. Soltani ◽  
S. Galeshi ◽  
F. Ghaderi-Far ◽  
E. Zeinali

Studies were conducted to estimate parameters and relationships associated with sub-processes in soil seed banks of oilseed rape in Gorgan, Iran. After one month of burial, seed viability decreased to 39%, with a slope of 2.03% per day, and subsequently decreased with a lower slope of 0.01 until 365 days following burial in the soil. Germinability remained at its highest value in autumn and winter and decreased from spring to the last month of summer. Non-dormant seeds of volunteer oilseed rape did not germinate at temperatures lower than 3.8 ºC and a water potential of -1.4 MPa ºd. The hydrothermal values were 36.2 and 42.9 MPa ºd for sub- and supra-optimal temperatures, respectively. Quantification of seed emergence as influenced by burial depth was performed satisfactorily (R² = 0.98 and RMSE = 5.03). The parameters and relationships estimated here can be used for modelling soil seed bank dynamics or establishing a new model for the environment.


Weed Science ◽  
1997 ◽  
Vol 45 (2) ◽  
pp. 242-248 ◽  
Author(s):  
Eric P. Prostko ◽  
Hsin-I Wu ◽  
James M. Chandler ◽  
Scott A. Senseman

Research was conducted to determine the suitability of the Fermi-Dirac distribution function for modeling the seedling emergence of downy brome, johnsongrass, and round-leaved mallow, as influenced by burial depth. Six sets of previously published emergence data were used to formulate the model and test its adequacy. Two independent johnsongrass emergence data sets were used to validate the model. Constant temperature growth chamber studies were conducted to evaluate the effects of temperature and moisture on the model parameters. The Fermi-Dirac distribution function was found to adequately describe the seedling emergence of downy brome, johnsongrass, and round-leaved mallow as indicated by a good visual data fit, narrow confidence intervals for the model parameters, and regression analysis of observed vs. modeled data. Although this function is a model used in physical science, its parameters can be related to abiotic factors such as soil texture, temperature, and moisture.


1990 ◽  
Vol 12 (1) ◽  
pp. 25 ◽  
Author(s):  
A Bogusiak ◽  
B Rice ◽  
M Westoby ◽  
MH Friedel

The ecology of hummock-grass vegetation involves recurring fires. The hypothesis was tested that soil seed banks of hummock grass species are stimulated to germinate by the heat of fire or by ash addition. Hummocks of Plectrachne schinzii Henr., Triodia basedowii E. Pritz., and Triodia pungens R. Br. were burned, removed, or removed with the ash returned, and subsequent regeneration was recorded, in Ulum National Park. Regeneration of hummock grass was by seedlings only. Seedling emergence averaged 5/m2, with no differences between treatments or hummock grass species. This indicates the heat of fires and ash addition may not be important in stimulating seed germination of these hummock grass populations. Gemination was distributed over more than one rainfall event following the treatments.


2021 ◽  
Vol 15 (2) ◽  
pp. 437-451
Author(s):  
Ayomiposi Olayinka Akinkuolie ◽  
Rafiu Olugbenga Sanni ◽  
Augustine. O. Isichei ◽  
Samson. O. Oke

The study investigated the composition of native and alien invasive species in soil seed banks of five different vegetation physiognomies in Akure Forest Reserve Ondo State, Nigeria. This was done with a view to determining and providing an insight into the population dynamics of alien, invasive species for subsequent prediction of potential plant population of the extant population. Five distinct sites (Natural forest, Teak plantation, Taungya system, Taungya + Teak + Gmelina and Teak + Gmelina + Pinus Plantation) designated as A, B, C, D and E were selected in the Forest Reserve. Two plots 25 m x 25 m each were selected for sampling in each of the five distinct physiognomies. Five replicates soil samples were randomly collected at 0-15 cm soil depth in dry and rainy seasons in each site and they were subjected to seedlings emergence for six months to determine the density and species composition (natives or aliens and percentage contribution) of the seed bank. The results of the seedling emergence revealed that the seed bank was dominated by herbaceous stems and also the proportion of aliens to natives was low. Analysis of variance revealed that there was no significant difference (P>0.05) in the density of both the aliens and native species in sites A, B and C indicating similarities in the seed bank density of the aliens and natives in the three sites while in sites D and E, there was a significant difference (P<0.05) indicating dissimilarity in the seed bank density of the aliens and natives in the two sites.Keywords: Plant Ecology, Forest, Seedling Emergence, Seed Bank, Alien Species, Conservation.


2020 ◽  
Vol 38 ◽  
Author(s):  
H. DONG ◽  
Y. MA ◽  
H. WU ◽  
W. JIANG ◽  
X. MA

ABSTRACT: Solanum nigrum L. (black nightshade), an annual to short-lived perennial weed, has become a problem weed in farming systems in central China. Laboratory and greenhouse experiments were conducted to examine the influence of various abiotic factors on seed germination of black nightshade to develop effective weed control programs. Seeds germinated at a range of constant temperatures from 15 to 30 oC, but no germination occurred at temperatures below 10 oC or above 35 oC. Seeds also germinated at alternating temperature regimes from 15/5 to 40/30 oC, with maximum germination (> 93.5%) at the alternating temperatures of 25/15 and 30/20 oC. Germination decreased as osmotic potential became more negative, and no germination was observed at ≤ -0.8 MPa. Moreover, germination was reduced by saline and alkaline stresses and no germination occurred at ≥ 200 mM NaCl or ≥ 150 mM NaHCO3 concentrations. Seed germination was not significantly affected by pH values from 5 to 10. Seedling emergence was significantly affected by burial depth with maximum emergence (93.1%) at 1 cm depth.


2010 ◽  
Vol 1 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Jodi N. Price ◽  
Boyd R. Wright ◽  
Caroline L. Gross ◽  
Wal R. D. B. Whalley

Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 451 ◽  
Author(s):  
Brenda J. Grewell ◽  
Morgane B. Gillard ◽  
Caryn J. Futrell ◽  
Jesús M. Castillo

Soil seed banks play a critical role in the maintenance of wetland plant communities and contribute to revegetation following disturbances. Analysis of the seed bank can therefore inform restoration planning and management. Emergence from seed banks may vary in response to hydrologic conditions and sediment disturbances. To assess the community-level impact of exotic Ludwigia hexapetala on soil seed banks, we compared differences in species composition of standing vegetation among invaded and non-invaded wetlands and the degree of similarity between vegetation and soil seed banks in northern California. To determine potential seed bank recruitment of L. hexapetala and associated plant species, we conducted a seedling emergence assay in response to inundation regime (drawdown vs. flooded) and sediment depth (surface vs. buried). Plant species richness, evenness, and Shannon’s H’ diversity were substantially lower in standing vegetation at L. hexapetala invaded sites as compared to non-invaded sites. Over 12 months, 69 plant taxa germinated from the seed banks, including L. hexapetala and several other exotic taxa. Seedling density varied among sites, being the highest (10,500 seedlings m−2) in surface sediments from non-invaded sites subjected to drawdown treatments. These results signal the need for invasive plant management strategies to deplete undesirable seed banks for restoration success.


Sign in / Sign up

Export Citation Format

Share Document