Phylogeny of Carpha and related genera (Schoeneae, Cyperaceae) inferred from morphological and molecular data

2007 ◽  
Vol 20 (2) ◽  
pp. 93 ◽  
Author(s):  
Xiufu Zhang ◽  
Jeremy J. Bruhl ◽  
Karen L. Wilson ◽  
Adam Marchant

The limits, definitions and relationships of Carpha have been controversial and unclear. This study using cladistic analyses of morphological and combined morphological and molecular data indicates that: (1) Carpha sensu latu is paraphyletic and its species form two clades, consistent with the definitions of Carpha sensu stricto and Asterochaete respectively (i.e. the data support the division of Carpha sensu latu into two genera: Carpha sensu stricto and Asterochaete); (2) the morphological data show a high degree of homoplasy within Schoeneae; (3) Schoeneae is not a monophyletic tribe; (4) Schoenus and Tricostularia are polyphyletic; (5) it is better to place Schoenoides back in Oreobolus; (6) separation of Capeobolus brevicaulis from Costularia or Tetraria is supported; and (7) both genera Costularia and Tetraria should be maintained. The study resolves some phylogenetic relationships between Carpha and its relatives. Many aspects of these relationships are in agreement with previous studies, but some of these relationships have no support. The study also resolves the phylogenetic relationships of species of Carpha, although with lack of support for some clades, highlighting the need for other sources of data.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7332 ◽  
Author(s):  
Carolina Pardo-Diaz ◽  
Alejandro Lopera Toro ◽  
Sergio Andrés Peña Tovar ◽  
Rodrigo Sarmiento-Garcés ◽  
Melissa Sanchez Herrera ◽  
...  

Dung beetles of the subfamily Scarabaeinae are widely recognised as important providers of multiple ecosystem services and are currently experiencing revisions that have improved our understanding of higher-level relationships in the subfamily. However, the study of phylogenetic relationships at the level of genus or species is still lagging behind. In this study we investigated the New World beetle genus Dichotomius, one of the richest within the New World Scarabaeinae, using the most comprehensive molecular and morphological dataset for the genus to date (in terms of number of species and individuals). Besides evaluating phylogenetic relationships, we also assessed species delimitation through a novel Bayesian approach (iBPP) that enables morphological and molecular data to be combined. Our findings support the monophyly of the genus Dichotomius but not that of the subgenera Selenocopris and Dichotomius sensu stricto (s.s). Also, our results do not support the recent synonymy of Selenocopris with Luederwaldtinia. Some species-groups within the genus were recovered, and seem associated with elevational distribution. Our species delimitation analyses were largely congruent irrespective of the set of parameters applied, but the most robust results were obtained when molecular and morphological data were combined. Although our current sampling and analyses were not powerful enough to make definite interpretations on the validity of all species evaluated, we can confidently recognise D. nisus, D. belus and D. mamillatus as valid and well differentiated species. Overall, our study provides new insights into the phylogenetic relationships and classification of dung beetles and has broad implications for their systematics and evolutionary analyses.



Zootaxa ◽  
2007 ◽  
Vol 1517 (1) ◽  
pp. 53-62 ◽  
Author(s):  
FRANK GLAW ◽  
ZOLTÁN T. NAGY ◽  
MIGUEL VENCES

Based on a specimen found at Montagne d'Ambre in northern Madagascar morphologically agreeing with Compsophis albiventris Mocquard, 1894, we report on the rediscovery of this enigmatic snake genus and species and its molecular phylogenetic relationships. Compsophis albiventris, considered to be the only representative of its genus and unreported since its original description, bears strong morphological similarities to species of Geodipsas Boulenger, 1896. A molecular phylogeny based on DNA sequences of three mitochondrial and nuclear genes (complete cytochrome b, fragments of 16S rRNA and c-mos) in Compsophis albiventris and three Geodipsas species corroborated close relationships between C. albiventris and Geodipsas boulengeri, and showed that the genera Compsophis and Geodipsas together form a monophyletic unit. Despite the general similarities, morphological data and chromatic features support the existence of two species groups, corresponding to Compsophis and Geodipsas. We consequently consider Geodipsas as a subgenus of Compsophis and transfer all species currently in Geodipsas into the genus Compsophis.



IAWA Journal ◽  
2004 ◽  
Vol 25 (4) ◽  
pp. 485-545 ◽  
Author(s):  
Peter Gasson ◽  
Elspeth Wray ◽  
Brian D. Schrire

The tribe Millettieae has traditionally included some 43 to 47 genera although more recent phylogenetic evidence has shown that a smaller core-Millettieae group of c. 23 genera may form part of a recircumscribed Millettieae sensu stricto. We have examined the wood of 27 genera, 16 of which are in the core-Millettieae and the remaining 11 belong in 4 groups, mostly with closer affinities outside Millettieae s.str. The wood anatomy of the various genera is nevertheless very uniform. Most genera are diffuse porous with no predominant vessel pattern. They have paratracheal parenchyma ranging from scanty through vasicentric, aliform and confluent, and often banded. Rays are mainly up to 5 cells wide. Axial parenchyma and rays are nearly always storied. The lianas Paraderris elliptica, Derris uliginosa, Ostryocarpus cf. riparius and Wisteria spp. have alternating bands of xylem and phloem, which are also found in some Dalbergieae. Even in the genera without such anomalous secondary growth there are many similarities between the wood of Millettieae and Dalbergieae. The wood of some genera in Sophoreae and Swartzieae is also compared. Our observations will be put in the context of recent cladistic analyses on both morphological and molecular data by other authors.



2019 ◽  
Author(s):  
Cara Van Der Wal ◽  
Shane T. Ahyong ◽  
Simon Y. W. Ho ◽  
Luana S. F. Lins ◽  
Nathan Lo

The mantis shrimp superfamily Squilloidea, with over 185 described species, is the largest superfamily in the crustacean order Stomatopoda. To date, phylogenetic relationships within this superfamily have been comprehensively analysed using morphological data, with six major generic groupings being recovered. Here, we infer the phylogeny of Squilloidea using a combined dataset comprising 75 somatic morphological characters and four molecular markers. Nodal support is low when the morphological and molecular datasets are analysed separately but improves substantially when combined in a total-evidence phylogenetic analysis. We obtain a well resolved and strongly supported phylogeny that is largely congruent with previous estimates except that the Anchisquilloides-group, rather than the Meiosquilla-group, is the earliest-branching lineage in Squilloidea. The splits among the Anchisquilloides- and Meiosquilla-groups are followed by those of the Clorida-, Harpiosquilla-, Squilla- and Oratosquilla-groups. Most of the generic groups are recovered as monophyletic, with the exception of the Squilla- and Oratosquilla-groups. However, many genera within the Oratosquilla-group are not recovered as monophyletic. Further exploration with more extensive molecular sampling will be needed to resolve relationships within the Oratosquilla-group and to investigate the adaptive radiation of squilloids. Overall, our results demonstrate the merit of combining morphological and molecular datasets for resolving phylogenetic relationships.



2019 ◽  
Vol 28 (2) ◽  
pp. 305-316
Author(s):  
M.A. Chursina ◽  
I.Ya. Grichanov

The recent catalogues of the family Dolichopodidae considered Syntormon pallipes (Fabricius, 1794) and S. pseudospicatus Strobl, 1899 as separate species. In this study, we used three approaches to estimate the significance of differences between the two species: molecular analysis (COI and 12S rRNA sequences), analysis of leg colour characters and geometric morphometric analysis of wing shape. The morphological data confirmed the absence of significant differences between S. pallipes and S. pseudospicatus found in the DNA analysis. Significant differences in the wing shape of two species have not been revealed. Hence, according to our data, there is no reason to consider S. pseudospicatus as a distinct species.



2017 ◽  
Author(s):  
Ross Mounce

In this thesis I attempt to gather together a wide range of cladistic analyses of fossil and extant taxa representing a diverse array of phylogenetic groups. I use this data to quantitatively compare the effect of fossil taxa relative to extant taxa in terms of support for relationships, number of most parsimonious trees (MPTs) and leaf stability. In line with previous studies I find that the effects of fossil taxa are seldom different to extant taxa – although I highlight some interesting exceptions. I also use this data to compare the phylogenetic signal within vertebrate morphological data sets, by choosing to compare cranial data to postcranial data. Comparisons between molecular data and morphological data have been previously well explored, as have signals between different molecular loci. But comparative signal within morphological data sets is much less commonly characterized and certainly not across a wide array of clades. With this analysis I show that there are many studies in which the evidence provided by cranial data appears to be be significantly incongruent with the postcranial data – more than one would expect to see just by the effect of chance and noise alone. I devise and implement a modification to a rarely used measure of homoplasy that will hopefully encourage its wider usage. Previously it had some undesirable bias associated with the distribution of missing data in a dataset, but my modification controls for this. I also take an in-depth and extensive review of the ILD test, noting it is often misused or reported poorly, even in recent studies. Finally, in attempting to collect data and metadata on a large scale, I uncovered inefficiencies in the research publication system that obstruct re-use of data and scientific progress. I highlight the importance of replication and reproducibility – even simple reanalysis of high profile papers can turn up some very different results. Data is highly valuable and thus it must be retained and made available for further re-use to maximize the overall return on research investment.



PhytoKeys ◽  
2020 ◽  
Vol 140 ◽  
pp. 33-45
Author(s):  
Chien-Ti Chao ◽  
Bing-Hong Huang ◽  
Jui-Tse Chang ◽  
Pei-Chun Liao

The genus Scutellaria comprises eight species distributed from 50 to 2000 m in Taiwan. Amongst them, S. barbata and S. taipeiensis are very similar on the basis of morphological and plastid DNA sequence information. Therefore, a comprehensive study of the taxonomic status of S. taipeiensis is necessary. We reviewed the herbarium sheets, related literature and protologues and compared morphologies of these two species, as well as their phylogenetic relationships. All evidence, including the diagnostic characters between S. taipeiensis and S. barbata, suggest that they belonged to a single species rather than two. As a result, S. taipeiensis is treated as a synonym of S. barbata.



Zootaxa ◽  
2004 ◽  
Vol 680 (1) ◽  
pp. 1 ◽  
Author(s):  
ARNE NYGREN

Autolytinae is revised based on available types, and newly collected specimens. Out of 170 nominal species, 18 are considered as incertae sedis, 43 are regarded as junior synonyms, and 25 are referred to as nomina dubia. The relationships of Autolytinae is assessed from 51 morphological characters and 211 states for 76 ingroup-taxa, and 460 molecular characters from mitochondrial 16S rDNA and nuclear 18S rDNA for 31 ingroup-taxa; outgroups include 12 non-autolytine syllid polychaetes. Two analyses are provided, one including morphological data only, and one with combined morphological and molecular data sets. The resulting strict consensus tree from the combined data is chosen for a reclassification. Three main clades are identified: Procerini trib. n., Autolytini Grube, 1850, and Epigamia gen. n. Proceraea Ehlers, 1864 and Myrianida Milne Edwards, 1845 are referred to as nomen protectum, while Scolopendra Slabber, 1781, Podonereis Blainville, 1818, Amytis Savigny, 1822, Polynice Savigny, 1822, and Nereisyllis Blainville, 1828 are considered



2001 ◽  
Vol 14 (4) ◽  
pp. 513 ◽  
Author(s):  
W. Cherry ◽  
P. A. Gadek ◽  
E. A. Brown ◽  
M. M. Heslewood ◽  
C. J. Quinn

A new species of Styphelieae collected from the Blue Mountains region of New South Wales is described. Cladistic analyses of morphological and molecular data show that the species has a strong affinity with the genus Pentachondra. The genus is redefined to accommodate the following features of the new species: a drupaceous fruit with 6–11 locules in which the mesocarp splits to release the separate pyrenes at maturity and a more complex inflorescence.



Sign in / Sign up

Export Citation Format

Share Document