Ancestral area analysis of Nothofagus (Nothofagaceae) and its congruence with the fossil record

2000 ◽  
Vol 13 (4) ◽  
pp. 469 ◽  
Author(s):  
Ulf Swenson ◽  
Robert S. Hill ◽  
Stephen McLoughlin

The evolutionary centre of origin of Nothofagus (Nothofagaceae) remains an open question. Competing hypotheses suggest either a South American or Australasian source area for Nothofagus. Antarctica, once part of Gondwana and densely vegetated in the Cretaceous, was certainly important for the diversification of the genus but cannot be included in current modelling due to its lack of extant species. By using Bremer’s (1992), Ronquist’s (1994) and Hausdorf’s (1998) methods, all based on cladistic philosophy, analyses of the modern areas of endemism being part of the ancestral area of Nothofagus were undertaken. Southern South America was distinctly identified as the likely ancestral area by Bremer’s and Hausdorf’s methods. This result is supported by the current fossil record. Ronquist’s method was not decisive and yielded ambiguous results, suggesting a larger, combined ancestral area. These results do not favour Australasia, or parts thereof, being an important area for Nothofagus origin. Bremer’s and Hausdorf’s methods identified New Zealand as the second most plausible source area, a result partly supported by the fossil record.

Zootaxa ◽  
2019 ◽  
Vol 4658 (1) ◽  
pp. 37-68
Author(s):  
LAURA NICOLI

Ceratophrys is the most diverse and widely distributed genus of Ceratophryidae, the clade of South American horned frogs. Numerous anuran fossil remains, including several fossil species, have been assigned to this genus. However, this seemingly extensive fossil record is problematic because several of the fossils are not properly identified and most of the taxonomic assignations are not justified. The present study traces all the fossil material attributed to Ceratophrys, clarifying, when possible, institutional allocations. Each of the remains was examined and its taxonomic assignation revisited, based on the morphology and possible synapomorphies of the genus, including its living species. Numerous fossils were properly identified and assigned with certainty to Ceratophrys. Only one fossil species, Ceratophrys ameghinorum, is considered valid. This information, along with recently reported evidence of fossil Ceratophrys, is briefly summarized to serve as a practical reference for the entire known fossil record of the genus. The fossil record is not especially informative about the evolution or distribution pattern of Ceratophrys, because most of the remains are relatively young (post-Miocene), collected within the present distribution of the genus, and morphologically consistent with that of the extant species. However, some useful information has emerged. The presence of Ceratophrys is well documented since the Neogene in the Pampean Region of South America. The single valid fossil species, Ceratophrys ameghinorum, possesses a unique combination of characters that reflects a mixture of characters observed in different clades of the genus; thus, resolution of its phylogentic position will inform our understanding of the evolution of the genus. The paleoenvironmental significance of some Ceratophrys fossils is also discussed, addressing the wide, but incompletely known current distribution and environmental tolerance of the genus.


2011 ◽  
Vol 17 ◽  
pp. 111-120 ◽  
Author(s):  
Nancy Knowlton ◽  
Jeremy Jackson

Coral reefs are the most biodiverse marine ecosystems on the planet, with at least one quarter of all marine species associated with reefs today. This diversity, which remains very poorly understood, is nevertheless extraordinary when one considers the small proportion of ocean area that is occupied by coral reefs. Networks of competitive and trophic linkages are also exceptionally complex and dense. Reefs have a long fossil record, although extensive reef building comes and goes. In the present, coral reefs sometimes respond dramatically to disturbances, and collapses are not always followed by recoveries. Today, much of this failure to recover appears to stem from the fact that most reefs are chronically stressed by human activities, judging by observations of recovery at exceptional locations where local human activity is minimal. How long reefs can continue to bounce back in the face of warming and acidification remains an open question. Another big uncertainty is how much loss of biodiversity will occur with the inevitable degradation of coral reefs that will continue in most places for the foreseeable future.


2021 ◽  
Vol 19 (2) ◽  
pp. 91-130
Author(s):  
Raúl Orencio Gómez ◽  
Guillermo Fidel Turazzini
Keyword(s):  

2016 ◽  
Vol 88 (2) ◽  
pp. 829-845 ◽  
Author(s):  
THAIS M.F. FERREIRA ◽  
ADRIANA ITATI OLIVARES ◽  
LEONARDO KERBER ◽  
RODRIGO P. DUTRA ◽  
LEONARDO S. AVILLA

ABSTRACT Echimyidae (spiny rats, tree rats and the coypu) is the most diverse family of extant South American hystricognath rodents (caviomorphs). Today, they live in tropical forests (Amazonian, coastal and Andean forests), occasionally in more open xeric habitats in the Cerrado and Caatinga of northern South America, and open areas across the southern portion of the continent (Myocastor). The Quaternary fossil record of this family remains poorly studied. Here, we describe the fossil echimyids found in karst deposits from southern Tocantins, northern Brazil. The analyzed specimens are assigned to Thrichomys sp., Makalata cf. didelphoides and Proechimys sp. This is the first time that a fossil of Makalata is reported. The Pleistocene record of echimyids from this area is represented by fragmentary remains, which hinders their determination at specific levels. The data reported here contributes to the understanding of the ancient diversity of rodents of this region, evidenced until now in other groups, such as the artiodactyls, cingulates, carnivores, marsupials, and squamate reptiles.


Paleobiology ◽  
1975 ◽  
Vol 1 (2) ◽  
pp. 175-188 ◽  
Author(s):  
Neil B. Todd

Evidence is presented that primitive artiodactyls had a diploid number of 14. The higher diploid numbers of most living artiodactyls are interpreted as resulting from karyotypic fissioning at the times of past adaptive radiations. The fossil record appears to support this contention.An evolutionary sequence of unusual X chromosome transformations has been deduced from the differences that exist among extant species. From these, and from interrelationships of karyotypes, certain phylogenetic revisions are suggested.


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1301 ◽  
Author(s):  
Adiël A. Klompmaker ◽  
Roger W. Portell ◽  
Aaron T. Klier ◽  
Vanessa Prueter ◽  
Alyssa L. Tucker

Spider crabs (Majoidea) are well-known from modern oceans and are also common in the western part of the Atlantic Ocean. When spider crabs appeared in the Western Atlantic in deep time, and when they became diverse, hinges on their fossil record. By reviewing their fossil record, we show that (1) spider crabs first appeared in the Western Atlantic in the Late Cretaceous, (2) they became common since the Miocene, and (3) most species and genera are found in the Caribbean region from the Miocene onwards. Furthermore, taxonomic work on some modern and fossil Mithracidae, a family that might have originated in the Western Atlantic, was conducted. Specifically,Maguimithraxgen. nov. is erected to accommodate the extant speciesDamithrax spinosissimus, whileDamithraxcf.pleuracanthusis recognized for the first time from the fossil record (late Pliocene–early Pleistocene, Florida, USA). Furthermore, two new species are described from the lower Miocene coral-associated limestones of Jamaica (Mithrax arawakumsp. nov. andNemausa windsoraesp. nov.). Spurred by a recent revision of the subfamily, two known species from the same deposits are refigured and transferred to new genera:Mithrax donovanitoNemausa, andMithrax unguistoDamithrax. The diverse assemblage of decapods from these coral-associated limestones underlines the importance of reefs for the abundance and diversity of decapods in deep time. Finally, we quantitatively show that these crabs possess allometric growth in that length/width ratios drop as specimens grow, a factor that is not always taken into account while describing and comparing among taxa.


2016 ◽  
Vol 12 (10) ◽  
pp. 20150813 ◽  
Author(s):  
Wolfgang Kiessling ◽  
Ádám T. Kocsis

Besides helping to identify species traits that are commonly linked to extinction risk, the fossil record may also be directly relevant for assessing the extinction risk of extant species. Standing geographical distribution or occupancy is a strong predictor of both recent and past extinction risk, but the role of changes in occupancy is less widely assessed. Here we demonstrate, based on the Cenozoic fossil record of marine species, that both occupancy and its temporal trajectory are significant determinants of risk. Based on extinct species we develop a model on the additive and interacting effects of occupancy and its temporal changes on extinction risk. We use this model to predict extinction risk of extant species. The predictions suggest a moderate risk for marine species on average. However, some species seem to be on a long-term decline and potentially at a latent extinction risk, which is not considered in current risk assessments.


Author(s):  
Thomas A. Hegna ◽  
Javier Luque ◽  
Joanna M. Wolfe

Fossils are critically important for evolutionary studies as they provide the link between geological ages and the phylogeny of life. The Pancrustacea are an incredibly diverse clade, representing over 800,000 described extant species, encompassing a variety of familiar and unfamiliar forms, such as ostracods, tongue worms, crabs, lobsters, shrimps, copepods, barnacles, branchiopods, remipedes, and insects. Having colonized nearly every environment on Earth, from hydrothermal vents to terrestrial habitats, they have a diverse fossil record dating back to the Cambrian (540–485 Ma). The quality of the fossil record of each clade is variable and related to their lifestyle (e.g., free-living versus parasitic, benthic versus pelagic) and the degree of mineralization of their cuticle. We review the systematics, morphology, preservation, and paleoecology of pancrustacean fossils; each major clade is discussed in turn, and, where possible, fossil systematics are compared with more recent data from molecular phylogenetics. We show that the three epic clades of the Pancrustacea—Allotriocarida, Multicrustacea, and Oligostraca—all have Cambrian roots, but the diversification of those clades did not take place until the Middle and Late Paleozoic. We also address the potential affinities of three “problematic” clades: euthycarcinoids, thylacocephalans, and cyclids. We conclude by assessing the future of pancrustacean paleobiology, discussing new morphological imaging techniques and further integration with growing molecular phylogenetic data.


Zootaxa ◽  
2019 ◽  
Vol 4656 (3) ◽  
pp. 475-486
Author(s):  
GIOVANNE M. CIDADE ◽  
DANIEL FORTIER ◽  
ASCANIO DANIEL RINCÓN ◽  
ANNIE SCHMALTZ HSIOU

The crocodylomorph fauna of the Cenozoic of South America is one of the richest and most diverse in the world. The most diverse group within that fauna is Alligatoroidea, with nearly all of its species belonging to the Caimaninae clade. Many of the fossil alligatoroid species from the Cenozoic of South America were proposed based on very incomplete remains, and as a result their validity requires revision. Two such species are Balanerodus logimus Langston, 1965, from the middle Miocene of Colombia and Peru, and Caiman venezuelensis Fortier & Rincón, 2012, from the Pliocene-Pleistocene of Venezuela. This study has performed a thorough review of the taxonomic status of these two alligatoroid species, concluding that B. logimus is a nomen dubium and that Ca. venezuelensis is a junior synonym of the extant species Ca. crocodilus. This review offers a significantly more accurate scenario for alligatoroid diversity in the Cenozoic of South America in different epochs such as the Miocene and Pleistocene. Additionally, the record of Ca. crocodilus from the Pleistocene of Venezuela is the first fossil record that can be assigned to this species. 


2007 ◽  
Vol 19 (3) ◽  
pp. 321-336 ◽  
Author(s):  
Carmen Primo ◽  
Elsa Vázquez

AbstractThis study of the relationships between the Antarctic, sub-Antarctic and South America biogeographical regions used both existing and new data. We constructed a presence/absence matrix of 237 species for 27 biogeographical divisions which included the Amsterdam-Saint Paul and Tristan da Cunha islands. Species and areas were classified using cluster analysis combined with MDS ordination. Six main groups were obtained from the species classification: 1) Amsterdam-Saint Paul, and 2) Tristan da Cunha species, 3) species from the Macquarie Province, 4) species from the sub-Antarctic Region, 5) Antarctic species and species distributed in the cold regions, 6) South American species. The biogeographical components were dominated by the endemic (although it is not as high as in other groups), Antarctic-South America and Southern Hemisphere elements. Except for Amsterdam-Saint Paul, Tristan da Cunha and Bouvet, the areas considered were grouped together with Macquarie being rather related to New Zealand regions. We speculate that the Antarctic Region may have acted as an “evolutionary incubator”, providing a centre of origin for sub-Antarctic and South American ascidians.


Sign in / Sign up

Export Citation Format

Share Document