Performance of grass and rainforest riparian buffers in the wet tropics, Far North Queensland. 2. Water quality

Soil Research ◽  
2004 ◽  
Vol 42 (4) ◽  
pp. 485 ◽  
Author(s):  
Lucy A. McKergow ◽  
Ian P. Prosser ◽  
Rodger B. Grayson ◽  
Dale Heiner

Riparian lands have the potential to buffer streams from hillslope sediment and nutrient transport. Most research on buffers has been conducted under laboratory or manipulated field experimental conditions. Few quantitative data exist on buffer performance under natural field conditions. This study reports measured soil loss and evaluates the effectiveness of riparian buffers on planar and convergent slopes under field hydrological conditions in Far North Queensland. The conditions are extreme for testing the effectiveness of riparian buffers as the land is steep, intensely cropped and receives high intensity rainfall. Hillslopes cropped with bananas were monitored using paired flumes. Runoff, bedload, and suspended loads were measured leaving the crop (upper sites) and leaving the riparian buffers (lower sites). Highly variable hillslope soil losses of <1 to >70 t/ha per wet season were recorded. High rates of hillslope soil loss were from areas of steep gradient with little ground cover experiencing high rainfall intensity. On planar slopes, even with high soil loss, grass buffer strips were able to trap >80% of the incoming bedload. Total N (TN), total P (TP) and suspended sediment (SS) loads were reduced between 25 and 65% by the planar slope grass buffer and within the first 15 m of the moderately convergent grass buffer. Loads leaving the moderately convergent buffer were often higher than those delivered from the crop, due to seepage after prolonged or high frequency rainfall. Under these conditions the buffer's main function is to prevent erosion rather than trap sediment and nutrients. Results from a highly convergent 5-ha hillslope, suggest that for buffers to be more effective in such topography, they should also be placed at the end of the crop rows, where contributing areas are smaller. Flow was able to concentrate within the crop and on at least one occasion was able to scour a 30-cm-wide channel through the entire width of the buffer releasing previously trapped material and making the buffer ineffective. A remnant rainforest buffer, receiving runoff from a planar slope, acted as a temporary store of sediment and nutrients that were reworked during subsequent events. This study demonstrates both a need for managed buffer strips on sloping tropical cropped land and identifies limitations on their potential effectiveness.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Angela Libutti ◽  
Anna Rita Rivelli

In recent years, soil addition with organic amendments, such as biochar and compost, has gained attention as an effective agronomic practice to sustain soil fertility, enhance plant growth and crop yield. Well known are the positive effects of compost on yield of a wide crop varieties, while both positive and negative responses are reported for biochar Therefore, the aim of the study was to verify the effect of biochar mixed with three types of compost on quanti-qualitative response of Swiss chard (Beta vulgaris L. cycla), a leafy green vegetable rich in dietary antioxidants, largely consumed worldwide. A factorial experiment in pots with two factors, including biochar (without biochar and with biochar from vine pruning residues) and compost (without compost, with compost from olive pomace, with vermicompost from cattle manure, and with compost from cattle anaerobic digestate), was setup. Two growth cycles were considered, and a set of quantitative (height of plants, number, area and fresh weight of leaves) and qualitative parameters (carotenoids, chlorophyll, total N, and NO3−content of leaves) were analyzed. Biochar decreased plant growth and NO3− leaf content; on the contrary, it increased total N leaf content, while compost improved all the considered parameters. The interactive effect of biochar and compost was evident only on total N and NO3− leaf content. In our experimental conditions, the compost showed to be the best option to improve Swiss chard growth and increase the content of phytopigments, while the biochar-compost mixtures did not produce the expected effect.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1064
Author(s):  
Shuiwang Duan ◽  
Kamaljit Banger ◽  
Gurpal S. Toor

Florida has a long history of phosphate-mining, but less is known about how mining affects nutrient exports to coastal waters. Here, we investigated the transport of inorganic and organic forms of nitrogen (N) and phosphorus (P) over 23 sampling events during a wet season (June–September) in primary tributaries and mainstem of Alafia River that drains into the Tampa Bay Estuary. Results showed that a tributary draining the largest phosphate-mining area (South Prong) had less flashy peaks, and nutrients were more evenly exported relative to an adjacent tributary (North Prong), highlighting the effectiveness of the mining reclamation on stream hydrology. Tributaries draining > 10% phosphate-mining area had significantly higher specific conductance (SC), pH, dissolved reactive P (DRP), and total P (TP) than tributaries without phosphate-mining. Further, mean SC, pH, and particulate reactive P were positively correlated with the percent phosphate-mining area. As phosphate-mining occurred in the upper part of the watershed, the SC, pH, DRP, and TP concentrations increased downstream along the mainstem. For example, the upper watershed contributed 91% of TP compared to 59% water discharge to the Alafia River. In contrast to P, the highest concentrations of total N (TN), especially nitrate + nitrite (NOx–N) occurred in agricultural tributaries, where the mean NOx–N was positively correlated with the percent agricultural land. Dissolved organic N was dominant in all streamwaters and showed minor variability across sites. As a result of N depletion and P enrichment, the phosphate-mining tributaries had significantly lower molar ratios of TN:TP and NOx–N:DRP than other tributaries. Bi-weekly monitoring data showed consistent increases in SC and DRP and a decrease in NOx–N at the South Prong tributary (highest phosphate-mining area) throughout the wet season, and different responses of dissolved inorganic nutrients (negative) and particulate nutrients (positive) to water discharge. We conclude that (1) watersheds with active and reclaimed phosphate-mining and agriculture lands are important sources of streamwater P and N, respectively, and (2) elevated P inputs from the phosphate-mining areas altered the N:P ratios in streamwaters of the Alafia River.


2021 ◽  
Vol 13 (4) ◽  
pp. 1991
Author(s):  
Silvia Stanchi ◽  
Odoardo Zecca ◽  
Csilla Hudek ◽  
Emanuele Pintaldi ◽  
Davide Viglietti ◽  
...  

We studied the effects of three soil management approaches (permanent grassing, chemical weeding, and buffer strips), and the additional impact of tractor passage on soil erosion in a sloping vineyard located in the inner part of Aosta Valley (N-W Italian Alps). The vineyard rows were equipped with a sediment collection system with channels and barrel tanks. A total of 12 events with sediment production were observed across 6 years, and the collected sediments were weighted and analyzed. Average erosion rates ranged from negligible (mainly in grassed rows) to 1.1 t ha−1 per event (after weeding). The most erosive event occurred in July 2015, with a total rainfall of 32.2 mm, of which 20.1 were recorded in 1 h. Despite the limited number of erosive events observed, and the low measured erosion rates, permanent grassing reduced soil erosion considerably with respect to weeding; buffering had a comparable effect to grassing. The tractor passage, independent of the soil management approaches adopted, visibly accelerated the erosion process. The collected sediments were highly enriched in organic C, total N, and fine size fractions, indicating a potential loss of fertility over time. Despite the measured erosion rates being low over the experiment’s duration, more severe events are well documented in the recent past, and the number of intense storms is likely to increase due to climate change. Thus, the potential effects of erosion in the medium and long term need to be limited to a minimum rate of soil loss. Our experiment helped to compare soil losses by erosion under different soil management practices, including permanent grassing, i.e., a nature-based erosion mitigation measure. The results of the research can provide useful indications for planners and practitioners in similar regions, for sustainable, cross-sectoral soil management, and the enhancement of soil ecosystem services.


2007 ◽  
Vol 64 (4) ◽  
pp. 336-343 ◽  
Author(s):  
Alexandre Marco da Silva ◽  
Lilian Casatti ◽  
Clayton Alcarde Alvares ◽  
Aline Maria Leite ◽  
Luiz Antonio Martinelli ◽  
...  

Soil loss expectation and possible relationships among soil erosion, riparian vegetation and water quality were studied in the São José dos Dourados River basin, State of São Paulo, Brazil. Through Geographic Information System (GIS) resources and technology, Soil Loss Expectation (SLE) data obtained using the Universal Soil Loss Equation (USLE) model were analyzed. For the whole catchment area and for the 30 m buffer strips of the streams of 22 randomly selected catchments, the predominant land use and habitat quality were studied. Owing mainly to the high soil erodibility, the river basin is highly susceptible to erosive processes. Habitat quality analyses revealed that the superficial water from the catchments is not chemically impacted but suffers physical damage. A high chemical purity is observed since there are no urban areas along the catchments. The water is physically poor because of high rates of sediment delivery and the almost nonexistence of riparian vegetation.


Author(s):  
Robin J. Blake ◽  
Ben A. Woodcock ◽  
Duncan B. Westbury ◽  
Peter Sutton ◽  
Simon G. Potts

2004 ◽  
Vol 47 (4) ◽  
pp. 565-574 ◽  
Author(s):  
R. Collins ◽  
A. Donnison ◽  
C. Ross ◽  
M. McLeod
Keyword(s):  

2018 ◽  
Vol 208 ◽  
pp. 318-325 ◽  
Author(s):  
Manon Janssen ◽  
Johanna Frings ◽  
Bernd Lennartz

Author(s):  
T.V. Vellinga ◽  
G. Andre

Data of nitrogen fertilization experiments of 1934 - 1994 have been analysed, using models for N uptake and dry matter (DM) yield. Both models were affected by fertilizer level, soil type, soil organic matter content, grassland use, cutting frequency, grassland renovation, white clover content and the N content analysis (Crude Protein or total-N). Effects on Soil Nitrogen Supply (SNS), Apparent Nitrogen Recovery (ANR) and Nitrogen Use Efficiency (NUE) are discussed. Differences in SNS, ANR and NUE between sand and clay were small, SNS on poorly drained peat soil was 60 and 80 kg N per ha higher than on clay and sand, respectively, ANR on poorly drained peat soil was 7 and 10% lower. The NUE was similar on sand, clay and poorly drained peat. ANR was low at low N application levels, due to immobilization. ANR increased from 35% to 65% at application levels of 50 and 250 kg N per ha, respectively. At application levels of more than 250 kg N per ha, ANR decreased. NUE decreased from 45 to 29 kg DM per kg N with increasing N application levels of 0 and 550 kg per ha. It is suggested that for a good N utilization a minimum N application of 100 kg N per ha should be used. SNS increased by a mixed use of grazing and cutting with 27 and 40 kg N per ha for sand/clay and poorly drained peat respectively. ANR on sand decreased from 5 to 10% at applications of 200 and 500 kg N per ha and NUE decreased with 1-2 kg DM per kg N. The effect of grazing was stronger under pure grazing than with a mixed use of grazing and cutting. Increasing the cutting frequency from 3 to 8 cuts per year had no effect on SNS, increased ANR with 0-20% and decreased NUE with 4-7 kg DM per kg N. The positive effect of the higher ANR compensated the lower NUE at application levels of 400 kg N per ha. Changes in ANR over the last sixty years can be explained by changes in experimental conditions, experimental treatments and chemical analysis. Changes in NUE can be explained by a higher proportion of perennial ryegrass and genetic improvement.


Sign in / Sign up

Export Citation Format

Share Document