scholarly journals Qualitative and quantitative response of soil organic carbon to 40 years of crop residue incorporation under contrasting nitrogen fertilisation regimes

Soil Research ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 1 ◽  
Author(s):  
Christopher Poeplau ◽  
Lisa Reiter ◽  
Antonio Berti ◽  
Thomas Kätterer

Crop residue incorporation (RI) is recommended to increase soil organic carbon (SOC) stocks. However, the positive effect on SOC is often reported to be relatively low and alternative use of crop residues, e.g. as a bioenergy source, may be more climate smart. In this context, it is important to understand: (i) the response of SOC stocks to long-term crop residue incorporation; and (ii) the qualitative SOC change, in order to judge the sustainability of this measure. We investigated the effect of 40 years of RI combined with five different nitrogen (N) fertilisation levels on SOC stocks and five SOC fractions differing in turnover times on a clay loam soil in Padua, Italy. The average increase in SOC stock in the 0–30cm soil layer was 3.1Mgha–1 or 6.8%, with no difference between N fertilisation rates. Retention coefficients of residues did not exceed 4% and decreased significantly with increasing N rate (R2=0.49). The effect of RI was higher after 20 years (4.6Mgha–1) than after 40 years, indicating that a new equilibrium has been reached and no further gains in SOC can be expected. Most (92%) of the total SOC was stored in the silt and clay fraction and 93% of the accumulated carbon was also found in this fraction, showing the importance of fine mineral particles for SOC storage, stabilisation and sequestration in arable soils. No change was detected in more labile fractions, indicating complete turnover of the annual residue-derived C in these fractions under a warm humid climate and in a highly base-saturated soil. The applied fractionation was thus useful to elucidate drivers and mechanisms of SOC formation and stabilisation. We conclude that residue incorporation is not a significant management practice affecting soil C storage in warm temperate climatic regions.

2014 ◽  
Vol 30 (4) ◽  
pp. 524-538 ◽  
Author(s):  
T. Lehtinen ◽  
N. Schlatter ◽  
A. Baumgarten ◽  
L. Bechini ◽  
J. Krüger ◽  
...  

2015 ◽  
Vol 2 (2) ◽  
pp. 871-902 ◽  
Author(s):  
H. C. Hombegowda ◽  
O. van Straaten ◽  
M. Köhler ◽  
D. Hölscher

Abstract. Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is however influenced by the type of the agroforestry system established, the soil and climatic conditions and management. In this regional scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): homegarden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across four climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference plot, an agriculture reference and two of the same AFS types of two ages (30–60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50–61 %) in the top meter of soil depending on the climate zone. The establishment of homegarden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in homegarden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.


2016 ◽  
Author(s):  
Christopher Poeplau ◽  
Cora Vos ◽  
Axel Don

Abstract. Estimation of soil organic carbon (SOC) stocks requires estimates of the carbon content, bulk density, stone content and depth of a respective soil layer. However, different application of these parameters could introduce a considerable bias. Here, we explain why three out of four frequently applied methods overestimate SOC stocks. In stone rich soils (> 30 Vol. %), SOC stocks could be overestimated by more than 100 %, as revealed by using German Agricultural Soil Inventory data. Due to relatively low stone content, the mean systematic overestimation for German agricultural soils was 2.1–10.1 % for three different commonly used equations. The equation ensemble as re-formulated here might help to unify SOC stock determination and avoid overestimation in future studies.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1139
Author(s):  
Yun-Ya Yang ◽  
Avi Goldsmith ◽  
Ilana Herold ◽  
Sebastian Lecha ◽  
Gurpal S. Toor

Soils represent the largest terrestrial sink of carbon (C) on Earth, yet the quantification of the amount of soil organic carbon (SOC) is challenging due to the spatial variability inherent in agricultural soils. Our objective was to use a grid sampling approach to assess the magnitude of SOC variability and determine the current SOC stocks in three typical agricultural fields in Maryland, United States. A selected area in each field (4000 m2) was divided into eight grids (20 m × 25 m) for soil sample collection at three fixed depth intervals (0–20 cm, 20–40 cm, and 40–60 cm). Soil pH in all fields was significantly (p < 0.05) greater in the surface soil layer (6.2–6.4) than lower soil layers (4.7–5.9). The mean SOC stocks in the surface layers (0–20 cm: 1.7–2.5 kg/m2) were 47% to 53% of the total SOC stocks at 0–60 cm depth, and were significantly greater than sub-surface layers (20–40 cm: 0.9–1.3 kg/m2; 40–60 cm: 0.8–0.9 kg/m2). Carbon to nitrogen (C/N) ratio and stable C isotopic composition (δ13C) were used to understand the characteristics of SOC in three fields. The C/N ratio was positively corelated (r > 0.96) with SOC stocks, which were lower in sub-surface than surface layers. Differences in C/N ratios and δ13C signatures were observed among the three fields. The calculated values of SOC stocks at 0–60 cm depth ranged from 37 to 47 Mg/ha and were not significantly different in three fields likely due to the similar parent material, soil types, climate, and a short history of changes in management practices. A small variability (~10% coefficient of variation) in SOC stocks across eight sampling grids in each field suggests that re-sampling these grids in the future can lead to accurately determining and tracking changes in SOC stocks.


SOIL ◽  
2017 ◽  
Vol 3 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Christopher Poeplau ◽  
Cora Vos ◽  
Axel Don

Abstract. Estimation of soil organic carbon (SOC) stocks requires estimates of the carbon content, bulk density, rock fragment content and depth of a respective soil layer. However, different application of these parameters could introduce a considerable bias. Here, we explain why three out of four frequently applied methods overestimate SOC stocks. In soils rich in rock fragments (> 30 vol. %), SOC stocks could be overestimated by more than 100 %, as revealed by using German Agricultural Soil Inventory data. Due to relatively low rock fragments content, the mean systematic overestimation for German agricultural soils was 2.1–10.1 % for three different commonly used equations. The equation ensemble as re-formulated here might help to unify SOC stock determination and avoid overestimation in future studies.


2021 ◽  
Vol 41 (5) ◽  
Author(s):  
Zhijie Li ◽  
Rüdiger Reichel ◽  
Zhenfeng Xu ◽  
Harry Vereecken ◽  
Nicolas Brüggemann

AbstractIncorporation of crop residues into the soil has been widely recommended as an effective method to sustain soil fertility and improve soil carbon sequestration in arable lands. However, it may lead to an increase in the emission of nitrous oxide (N2O) and leaching of nitrate (NO3−) to groundwater due to higher nitrogen (N) availability after crop residue incorporation. Here, we conducted a meta-analysis based on 345 observations from 90 peer-reviewed studies to evaluate the effects of crop residue return on soil N2O emissions and NO3− leaching for different locations, climatic and soil conditions, and agricultural management strategies. On average, crop residue incorporation significantly stimulated N2O emissions by 29.7%, but decreased NO3− leaching by 14.4%. The increase in N2O emissions was negatively and significantly correlated with mean annual temperature and mean annual precipitation, and with the most significant changes occurring in the temperate climate zone. Crop residues stimulated N2O emission mainly in soils with pH ranging between 5.5 and 6.5, or above 7.5 in soils with low clay content. In addition, crop residue application decreased NO3− leaching significantly in soils with sandy loam, silty clay loam, and silt loam textures. Our analysis reveals that an appropriate crop residue management adapted to the site-specific soil and environmental conditions is critical for increasing soil organic carbon stocks and decreasing nitrogen losses. The most important novel finding is that residue return, despite stimulation of N2O emissions, is particularly effective in reducing NO3− leaching in soils with loamy texture, which are generally among the most productive arable soils.


SOIL ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. 13-23 ◽  
Author(s):  
H. C. Hombegowda ◽  
O. van Straaten ◽  
M. Köhler ◽  
D. Hölscher

Abstract. Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is influenced by the type of the agroforestry system established, the soil and climatic conditions, and management. In this regional-scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): home garden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across 4 climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference, an agriculture reference and two of the same AFS types of two ages (30–60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50–61 %) in the top meter of soil depending on the climate zone. The establishment of home garden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture SOC stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in home garden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2016
Author(s):  
Alexandra Crème ◽  
Cornelia Rumpel ◽  
Sparkle L. Malone ◽  
Nicolas P. A. Saby ◽  
Emmanuelle Vaudour ◽  
...  

Introduction of temporary grasslands into cropping cycles could be a sustainable management practice leading to increased soil organic carbon (SOC) to contribute to climate change adaption and mitigation. To investigate the impact of temporary grassland management practices on SOC storage of croplands, we used a spatially resolved sampling approach combined with geostatistical analyses across an agricultural experiment. The experiment included blocks (0.4- to 3-ha blocks) of continuous grassland, continuous cropping and temporary grasslands with different durations and N-fertilizations on a 23-ha site in western France. We measured changes in SOC storage over this 9-year experiment on loamy soil and investigated physicochemical soil parameters. In the soil profiles (0–90 cm), SOC stocks ranged from 82.7 to 98.5 t ha−1 in 2005 and from 81.3 to 103.9 t ha−1 in 2014. On 0.4-ha blocks, the continuous grassland increased SOC in the soil profile with highest gains in the first 30 cm, while losses were recorded under continuous cropping. Where temporary grasslands were introduced into cropping cycles, SOC stocks were maintained. These observations were only partly confirmed when changing the scale of observation to 3-ha blocks. At the 3-ha scale, most grassland treatments exhibited both gains and losses of SOC, which could be partly related to soil physicochemical properties. Overall, our data suggest that both management practices and soil characteristics determine if carbon will accumulate in SOC pools. For detailed understanding of SOC changes, a combination of measurements at different scales is necessary.


Soil Research ◽  
2017 ◽  
Vol 55 (8) ◽  
pp. 723 ◽  
Author(s):  
Ning Sui ◽  
Chaoran Yu ◽  
Guanglei Song ◽  
Fan Zhang ◽  
Ruixian Liu ◽  
...  

The objective of this study was to evaluate the effects of consecutive crop residue incorporation and potassium (K) fertilisation on plant–soil K balance, K forms, K release and K fixation capacity under wheat–cotton rotation at Nanjing and Dafeng in China. Six treatments were evaluated: control (without K input), wheat straw at 0.9tha–1, cotton residue at 0.7tha–1, wheat straw and cotton residue at the aforementioned rates, and 150 and 300kg ha–1 fertiliser K. Treatments in each rotation year had an identical rate of nitrogen and phosphate fertiliser application. The initial soil K content was higher in Dafeng than Nanjing. In the low K content soil of Nanjing, crop K uptake with double crop straw was significantly higher than that under single crop straw return or inorganic fertiliser, and K uptake increased with increasing K inputs. Only double crop straw or 300kg ha–1 fertiliser K treatments reached apparent K balance in Nanjing, but not in Dafeng. The high negative K balance resulted from the elevated K removal by crops in Dafeng. Incorporation of double crop residues favoured accumulation of different forms of K. Application of K fertiliser tended to increase soil water-soluble K, and crop residue incorporation greatly improved non-exchangeable K at a depth of 0–20cm. Similar to K fertiliser, crop residue incorporation significantly increased soil K release and decreased K fixation at both sites. In summary, in a 3-year field experiment, crop residue incorporation and inorganic K fertilisation had similar effects on soil K pools and balance depending on initial soil K level and actual K input.


2013 ◽  
Vol 93 (4) ◽  
pp. 415-425 ◽  
Author(s):  
David E. Pelster ◽  
Martin H. Chantigny ◽  
Philippe Rochette ◽  
Denis A. Angers ◽  
Jérôme Laganière ◽  
...  

Pelster, D. E., Chantigny, M. H., Rochette, P., Angers, D. A., Laganière, J., Zebarth, B. and Goyer, C. 2013. Crop residue incorporation alters soil nitrous oxide emissions during freeze–thaw cycles. Can. J. Soil Sci. 93: 415–425. Freeze–thaw (FT) cycles stimulate soil nitrogen (N) and carbon (C) mineralization, which may induce nitrous oxide (N2O) emissions. We examined how soybean (Glycine max L.) and corn (Zea mays L.) residue incorporation affect N2O emissions from high C content (35 g kg−1) silty clay and low C content (19 g kg−1) sandy loam soils over eight 10-d FT cycles, as a function of three temperature treatments [constant at +1°C (unfrozen control), +1 to −3°C (moderate FT), or +1 to −7°C (extreme FT)]. In unamended soils, N2O emissions were stimulated by FT, and were the highest with extreme FT. This was attributed to the increased NO3 availability measured under FT. Application of mature crop residues (C:N ratios of 75 for soybean and 130 for corn) caused rapid N immobilization, attenuating FT-induced N2O emissions in the silty clay. In the sandy loam, residue addition also induced immobilization of soil mineral N. However, N2O emissions under moderate FT were higher with than without crop residues, likely because N2O production in this low-C sandy loam was stimulated by C addition in the early phase of incubation. We conclude that FT-induced N2O emissions could be reduced through incorporation of mature crop residues and the subsequent immobilization of mineral N, especially in C-rich soils.


Sign in / Sign up

Export Citation Format

Share Document