Soil properties sensitive to degradation caused by increasing intensity of conventional tillage

Soil Research ◽  
2021 ◽  
Author(s):  
Rodrigo Fernandes Herrera Estevam ◽  
Devison Souza Peixoto ◽  
José Fernandes de Melo Filho ◽  
Helen Carla Santana Amorim ◽  
Fatima Maria de Souza Moreira ◽  
...  
Soil Research ◽  
2009 ◽  
Vol 47 (4) ◽  
pp. 362 ◽  
Author(s):  
Xirui Zhang ◽  
Hongwen Li ◽  
Jin He ◽  
Qingjie Wang ◽  
Mohammad H. Golabi

Conservation tillage is becoming increasingly attractive to farmers because it involves lower production costs than does conventional tillage. The long-term effects of sub-soiling tillage (ST), no tillage (NT), and conventional tillage (CT) on soil properties and crop yields were investigated over an 8-year period (2000–07). The study was conducted in a 2-crop-a-year region (Daxing) and a 1-crop-a-year region (Changping) of the Beijing area in China. At 0–0.30 m soil depth, water stability of macro-aggregates (>0.25 mm) was much greater for ST (22.1%) and NT (12.0%) than for CT in Daxing, and the improvements in Changping were 18.9% and 9.5%, respectively. ST and NT significantly (P < 0.05) improved aeration porosity by 14.5% and 10.6%, respectively, at Daxing and by 17.0% and 8.6% at Changping compared with CT treatment. Soil bulk density after 8 years was 0.8–1.5% lower in ST and NT treatments than in CT at both sites. Soil organic matter and available N and P followed the same order ST ≈ NT > CT at both sites. Consequently, crop yields in ST and NT plots were higher than in CT plots due to improved soil physical and chemical properties. Within the conservation tillage treatments, despite similar economic benefit, the effects on crop yields for ST were better than for NT. Mean (2000–07) crop yields for ST were 0.2% and 1.5% higher than for NT at Daxing and Changping, respectively. We therefore conclude that ST is the most suitable conservation tillage practice for annual 2-crop-a-year and 1-crop-a-year regions in the Beijing area.


2020 ◽  
Vol 5 (01) ◽  
pp. 1-15
Author(s):  
Abdel-Aal M. H.

A field experiment was carried out during the early summer seasons of 2018, at Agricultural Research Centre (ARC) Giza, Egypt. This study aims to examine the effect of three tillage treatments under three different moisture contents on some soil properties and on maize crop production. The experiments included three moisture contents of (MC1, 27.2 %), (MC2, 15.4 %) and (MC3, 7.2 %); as well as three tillage treatments, no-tillage control (NT), minimum tillage (MT) and conventional tillage (CT). The experimental was laid out in split-split plot design with four replications. The results showed that, there was significant effect of tillage at different moisture levels on soil physical and chemical properties. It was also indicated that the effect of tillage practices was significantly on soil bulk density, total porosity, hydraulic conductivity and moisture constants, where the conventional tillage at soil moisture level 15.4% (MC2) helped in improving soil bulk density, hydraulic conductivity and total porosity. Soil organic C, cations exchange capacity CEC, available N, P and K were improved in the soil surface layer of NT and decreased with depth. Clod mean weight diameter of soil was improved with 15.4-% of soil moisture content regardless of tillage depth and enhanced root proliferation by increasing density roots compared with minimum and no tillage in maize plant. The grain yields of maize were improving more under conventional tillage at moisture content 15.4% compared with other treatments. It was found that plant height and roots value increased by using conventional tillage compared with other tillage treatments.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
OMBIR SINGH ◽  
MOHAN SINGH ◽  
ROHITASAV SINGH

A field experiment was conducted at the Crop Research Centre of GBPUA and T, Pantnagar, Udham Singh Nagar continuous two years to study the productivity, soil properties, and economics of wheat (Triticum aestivum L.) under different wheat establishment methods in main plots and seven weed management practices in sub plots, replicated thrice in a split plot design. Zero tilled wheat exhibited more number of spikes m-2 and more number of grains per spike was significantly higher than reduced and conventional tillage. The zero tilled wheat yielded 12.35 and 3.66 per cent higher over reduced and conventional tillage during Ist year and 11.99 and 3.09 per cent during IInd year. The bulk density of soil was higher under zero tillage than that of other tillage. The infiltration rate was significantly greater with ZT than RT and CT. The highest grain yield was obtained in two hand weedings done at 30 and 60 DAS and was at par with Isoproturon 1.0 kg ha-1 + Metsulfuron methyl 4 g ha-1 at 30 DAS and Clodinafop – Propargyl 60 g ha-1 at 30 DAS fb. Metsulfuron methyl 4 g ha-1 at 37 DAS.


Agriculture ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 62 ◽  
Author(s):  
Karen Ordoñez-Morales ◽  
Martin Cadena-Zapata ◽  
Alejandro Zermeño-González ◽  
Santos Campos-Magaña

In many regions, conservation tillage has been shown to contribute to preserving soil properties. However, in order to promote this practice in new areas, it is necessary to generate information about its results in local environmental conditions. Our objective was to study the effect of No Tillage (NT), Vertical Tillage (VT) and Conventional Tillage (CT) on physical soil properties of a clay loam soil and on yields (Avena sativa L.), in a semiarid area of Mexico. From 2013 to 2016 an experiment was conducted in random blocks, with the three tillage systems as treatments. Four variables were measured; bulk density (Bd), pore space (P), hydraulic conductivity (Ks) and crop yield. Our results did show scarce differences between the tillage systems. Values ranged between 1.21 g cm−3 to 1.39 g cm−3 for Bd, 45% to 55% for P, and 4.29 mm h−1 to 13.61 mm h−1 for Ks. Although differences were not significant among treatments, Bd decreased 6.7% for CT, 5.6% for NT and 0.7% for VT. P increased 6% for CT, 5% for NT and 0.5% for VT. Ks for CT decreased 6% more than for NT and VT. Average yield was 13% less in NT compared to CT and VT. A long-term investigation is needed in order to determine the effects of tillage methods, in our particular environmental conditions.


2014 ◽  
pp. 37-40
Author(s):  
Sándor Ferencsik ◽  
Tamás Rátonyi

Tillage changes soil properties and the way how the environment affects those properties. Soil properties and environment determine the rate of water movement in liquid and gaseous form into and out of soil. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management and the KITE PLC, various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok county. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively. The purpose of the present study is to compare these cultivation systems according to the soil- and maize kernel moisture content and to the yield based on the years of 2012 and 2013.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1596
Author(s):  
Iwona Jaskulska ◽  
Kestutis Romaneckas ◽  
Dariusz Jaskulski ◽  
Lech Gałęzewski ◽  
Barbara Breza-Boruta ◽  
...  

Tillage is an agrotechnical practice that strongly affects the soil environment. Its effect on soil properties depends on the system and, more specifically, on the degree of soil inversion and loosening. Strip-till is a non-inversive method that loosens only narrow soil strips. In strip-till one-pass (ST-OP) technology, tillage is combined with a simultaneous application of fertilizers and seed sowing. In a static multi-year field experiment, the soil properties after application of ST-OP for 8 years were compared to those of soil under conventional tillage with the use of a moldboard plough to a depth of 20 cm (CT), and equally deep loosened and mixed reduced tillage (RT). A field experiment of these three treatments was performed since 2012 in sandy loam soil, Luvisol. A total of 44 features were examined that described the physical, chemical, biological, and biochemical soil properties in the 0–20 cm layer, and penetration resistance (PR), bulk density (BD), and soil moisture (SM) in the 25–30 cm layer. The influence of the ST-OP technology on the yield of crops was also determined. Multivariate analysis shows that the ST-OP method, in terms of affecting the soil properties, differs considerably from RT and CT treatments. The soil after the ST-OP method contained two- to four-fold more earthworms (En), with a mass (Em) 2- to 5-fold higher, than those in the soil following RT and CT, respectively. In the ST-OP soil the content of available phosphorus (Pa) and available potassium (Ka); the total count of bacteria (Bt), cellulolytic microorganisms (Bc), and fungi (Ff); and the activity of phosphatases (AlP, AcP) were significantly higher. Compared with CT, the content of total organic carbon (Ct) and its content in the fractions of organic matter were also higher, with the exception of humins (CH). The yields of winter rapeseed and winter wheat using the ST-OP technology were marginally higher compared with those using the CT and RT technology.


2018 ◽  
Vol 10 (5) ◽  
pp. 100
Author(s):  
John S. K. Banda ◽  
Alice M. Mweetwa ◽  
Munsanda Ngulube ◽  
Elijah Phiri

The paper reports findings from an evaluation of the effects of selected chemical and biological properties of soils under maize-cowpea cropping systems in Conservation Agriculture (CA) and their relationship to biological nitrogen fixation capabilities of cowpea. Soils from Kayowozi Agriculture Camp of Chipata District of Zambia where CA had been practiced for six years were evaluated. Cropping systems studied included conventional tillage (control), maize monocropping (sole maize), maize-cowpea intercrop, maize-cowpea rotation: maize phase and maize-cowpea: cowpea phase. Standard laboratory procedures were used to determine the changes in the selected soil properties as a result of these cropping sequences under CA. The study showed that maize- cowpea intercrop and rotation-maize phase under conservation agriculture could result in a significant increase in soil organic carbon, total nitrogen and exchangeable calcium after six years of practice. This increase can be associated with the amount and type of residue retained and the contribution of biologically fixed nitrogen from the cowpea. Having cowpea as the immediate previous crop in sequence can result in a depression of soil pH. Soil pH, total nitrogen, available phosphorus and exchangeable calcium in maize-cowpea cropping sequences can influence the amount of biologically fixed nitrogen. Changes in soil activity and microbial biomass might need more than six years to be apparent. The sequencing pattern of crops in a rotation, the choices and characteristics of crops, and the length of time of practice, all play an important role in determining interactions and processes leading to changes in soil properties and crop performance over time.


Sign in / Sign up

Export Citation Format

Share Document