Evaluation of the CREAMS model. I. Sensitivity analysis of the soil erosion sedimentation component for aggregated clay soils

Soil Research ◽  
1989 ◽  
Vol 27 (3) ◽  
pp. 545 ◽  
Author(s):  
DM Silburn ◽  
RJ Loch

The sensitivity of the soil erosion component of the CREAMS model to changes in various input parameters was assessed in the range of parameter values suited to erosion from aggregated clay soils. Predictions of total sediment yield were sensitive to changes in a number of parameters, and interactions between parameter values were observed, e.g., for situations when either detachment of sediment or transport capacity of overland flow limited sediment yield. The CREAMS model was classified as: (i) sensitive to: specific gravity of sediment (Sgi), slope steepness; (ii) sensitive under some conditions, moderately sensitive under others to: total runoff (Vu); Universal Soil Loss Equation factors of erodibility (K), cover (C) and support practices (P); Manning-type available shear parameter (nbov); (iii) moderately sensitive to: peak runoff rate (�p), storm erosivity (EI30), slope length, sediment size distribution and kinematic viscosity. The model was judged to be 'sensitive' to a parameter when change in that parameter caused an equal or greater relative change in predicted sediment yield.

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2221
Author(s):  
Qihua Ran ◽  
Feng Wang ◽  
Jihui Gao

Rainfall patterns and landform characteristics are controlling factors in runoff and soil erosion processes. At a hillslope scale, there is still a lack of understanding of how rainfall temporal patterns affect these processes, especially on slopes with a wide range of gradients and length scales. Using a physically-based distributed hydrological model (InHM), these processes under different rainfall temporal patterns were simulated to illustrate this issue. Five rainfall patterns (constant, increasing, decreasing, rising-falling and falling-rising) were applied to slopes, whose gradients range from 5° to 40° and projective slope lengths range from 25 m to 200 m. The rising-falling rainfall generally had the largest total runoff and soil erosion amount; while the constant rainfall had the lowest ones when the projective slope length was less than 100 m. The critical slope of total runoff was 15°, which was independent of rainfall pattern and slope length. However, the critical slope of soil erosion amount decreased from 35° to 25° with increasing projective slope length. The increasing rainfall had the highest peak discharge and erosion rate just at the end of the peak rainfall intensity. The peak value discharges and erosion rates of decreasing and rising-falling rainfalls were several minutes later than the peak rainfall intensity.


2021 ◽  
Author(s):  
Xiaonan Shi ◽  
Fan Zhang ◽  
Li Wang

<p>Serious soil erosion is observed during the spring because soil thawing coincides with the period of snowmelt and low meadow coverage at this time. Studies relating to soil erosion caused by spring meltwater are limited and controversial. In this study, a field experimental study was conducted in an alpine meadow slope in the Binggou watershed on the northern edge of the Tibetan Plateau to assess the impact of multiple factors on spring meltwater erosion. The multiple factors included three flow rates, four slope gradients, and three underlying surface conditions (meadow, disturbed meadow, and alluvial soil). An equal volume of concentrated meltwater flow was used in all experiments. The results showed that rapid melting at a high flow rate could accelerate soil erosion. The influence of the slope gradient on the amount of runoff was positively linear and the influence was relatively low. However, the slope gradient had a strong impact on soil erosion. The meadow could effectively reduce soil erosion, although when the meadow was disturbed, the total runoff increased by 60% and the sediment yield by a factor of 1.5. The total runoff from the alluvial soil doubled in comparison to the meadow, while the sediment yield increased nearly 7-fold. The findings of this study could be helpful to understand the characteristics and impact of multiple controlling factors of spring meltwater erosion. It also aims to provide a scientific basis for an improved management of alpine meadows as well as water and soil conservation activities in high-altitude cold regions.</p><p> </p>


Soil Research ◽  
1983 ◽  
Vol 21 (1) ◽  
pp. 47 ◽  
Author(s):  
RJ Loch ◽  
TE Donnollan

Size distributions of the solids in runoff water were measured for two clay soils subjected to simulated rain under a range of plot lengths and two tillage orientations. Selective transport did not appear to have affected the sediment size distributions. Therefore, these could be used as a measure of soil structure and aggregate breakdown by rainfall and runoff. There was little dispersed clay, most of the sediment remaining aggregated. For each soil, sediment size distributions were bimodal, peaks in sediment size being related to orders of aggregation in each soil. Concentrations of dispersed clay provide evidence that stresses on aggregates moved by rain impact on flowing water were greater than on those moved in rills by flowing water alone. Consistent with this, sediment size distributions showed much less breakdown to sizes <0.125 mm in rills. Suspended load (sediment < 20 �m) showed little temporal fluctuation, and little or no decrease with time, suggesting that for these soils, aggregate disruption by raindrops and overland flow provides a continuous source of suspendable material. Bed-load was more variable and saltating and contact load appeared to be complementary to some extent. Large differences between the two soils in measured sediment concentrations could not be explained by slight differences in sediment size. However, large differences between the soils in the water content and density of saturated aggregates were found. Transport equations for bed-load sediment suggest that the measured difference in aggregate density is sufficient to explain the difference between the soils in rates of sediment transport.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 276 ◽  
Author(s):  
Tugrul Yakupoglu ◽  
Jesús Rodrigo-Comino ◽  
Artemi Cerdà

New management and techniques to reduce soil and water losses are necessary to achieve goals related to sustainability and develop useful agronomical plans. Among the strategies to reduce soil losses, the use of polymers has been studied but little is known about the effect of them on soil aggregates under extreme rainfall conditions. The main aim of this study was to compare the effects of polyacrylamide (PAM) and polyvinyl alcohol (PVA) on initial soil erosion process activation. We applied both products on soils and soil aggregate stability was measured on polymer treated and control plots. Laboratory erosion plots (pans) were placed on 15% slope, and sequential simulated rainfalls (under dry and wet conditions) with 360 mm h−1 intensity were applied for 12 min. Time to runoff, total runoff, runoff sediment yield, and splash sediment yield were determined. The results show that polymers do not delay runoff initiation; however, they reduced total runoff, sediment yield, and soil transported by the splash. PVA was not effective in reducing the total runoff during the first rainfall being PAM more effective in this way. However, under the sequential rainfall, both polymers obtained positive results, showing PAM some improvements in comparison to PVA. The effect of the polymer to reduce soil transported by splash after performing the second rainfall simulation was clearly demonstrated, meanwhile the effects during the first simulation were not significant. The effectiveness of the polymers on soil aggregates increased with increasing aggregate size. The application of polymers reached the highest efficiency on aggregates of 6.4 mm in diameter.


2021 ◽  
Vol 9 ◽  
Author(s):  
Bingbing Zhu ◽  
Zhengchao Zhou ◽  
Zhanbin Li

The Loess Plateau has long been suffering from serious soil erosion of which erosion from the slope-gully system is now dominant. The slope-gully system is characterized with distinctive erosion distribution zones consisting of inner and inter gully areas wherein erosion patterns spatially vary, acting as both sediment source and the dominant sediment and water transport mechanism. In this paper, a substantial body of research is reviewed concentrating on the soil erosion processes and control practices in the slope-gully system. The inner gully area is identified as the main sediment source while runoff and sediment from the inter-gully upland is found to significantly affect down slope erosion processes. Correspondingly, the protective vegetation pattern and coverage should be strategically designed for different erosion zones with an emphasis on the critical vegetation cover and pattern to reduce sediment yield of the whole slope-gully system. Check-dam could change the base level of erosion and reduce the slope length of the gully side, which will further decrease the possibility and magnitude of gravity erosion. We concluded that understanding the erosion processes and implementing erosion practices for the slope-gully system are of importance and require more research efforts that emphasize: 1) the influence of upland runoff on erosion processes at downslope; 2) the relationship between hydraulic characteristics of overland flow and erosion process at a slope-gully system scale; 3) physical mechanisms of different vegetation patterns on the slope-gully erosion process.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1684 ◽  
Author(s):  
Alemu Aga ◽  
Bayou Chane ◽  
Assefa Melesse

To prolong the useful life of lakes and reservoirs, prioritizing watersheds by severity and risk of soil erosion is an essential index to develop sound sediment management plans. This study aims to predict soil erosion risk and sediment yield using Soil and Water Assessment Tool (SWAT) model in Lake Ziway basin, Ethiopia, and the model result is validated with lake bathymetric changes. The SUFI-2 program was applied for a model calibration and the performance of the model was assessed. The catchment prioritization study indicated that some sub-basins having the same soil type and land use but a higher slope gives higher sediment yield. This confirms that, in the basin, the upland is the main source of sediment for the lake, hence the variation of sediment yield is more sensitive to terrain slope. Furthermore, the soil conservation scenarios demonstrated in SWAT that reduce the slope length of the watershed by 50% for a slope greater than 5% are decreasing the sediment yield of the basin by 55%. The bathymetric differencing of the lake indicates that the sediment was accumulating at a rate of 3.13 t/ha/year while a calibrated SWAT model resulted in 5.85 t/ha/year. The identified reasons for these variations are the existence of outlet for the lake, floodplain depositions and abstraction of sediment (sand mining) from the tributary rivers before flowing to the lake.


2010 ◽  
Vol 7 (4) ◽  
pp. 6447-6489 ◽  
Author(s):  
M. B. Defersha ◽  
S. Quraishi ◽  
A. Melesse

Abstract. Soil erosion is a two-phase process consisting of the detachment of individual particles and their transport by erosive agents such as flowing water. The rate at which erosion occurs depends upon the individual as well as interactive effects of different parameters responsible for soil erosion. The study discusses results of a laboratory analysis and evaluates the effect of slope steepness and antecedent moisture content on sediment yield (wash) and runoff rate. Interrill sediment yield, splash detachment, runoff, and sediment size distribution were measured in laboratory erosion pans under simulated total duration of 90 min. Rainfall intensity at 120 mm/hr, 70 mm/hr, and 55 mm/hr were applied sequentially at 9, 25, and 45% slope steepness for three soils (Alemaya Black soil, Regosols, and Cambisols) varied from clay to sandy clay loam in texture with wet and dry antecedent water contents. As slope steepness increased from 9 to 25% splash increased for five treatments and decreased for the remaining treatment; washed sediment increased for all treatments. As slope increased from 25 to 45% splash decreased for five treatments but increased for one treatment, and washed sediment increased for three treatments but decreased for the other three treatments. Pre-wetting decreased splash detachment for all soil treatments and rate of reduction was high for the highly aggregated soil, Alemaya Black soil and low for the less aggregated soil Regosols. Splash sediment and sediment yield was not correlated. Change in splash with increase in slope steepness was also not correlated with change in sediment yield. Change in runoff rate with increase in slope steepness was correlated (r=0.66) with change in sediment yield. For Alemaya Black soil and Regosols, splashed sediment size distribution was correlated with washed sediment size distribution. Interrill erosion models that include runoff and rainfall intensity parameters were a better fit for these data than the rainfall intensity based model. The exponent term, b, values in (E=a Ib) model did not approach 2.00 for all treatments. For the same slope steepness factor, both rainfall and rainfall-runoff based models provided different erodibility coefficients at different levels of slope and moisture contents.


1986 ◽  
Vol 66 (4) ◽  
pp. 591-600 ◽  
Author(s):  
J. J. KISS ◽  
E. DE JONG ◽  
H. P. W. ROSTAD

Soil erosion in five Rural Municipalities of west-central Saskatchewan was assessed using cesium-137 as an indicator of soil redistribution. Native, noneroded soils across the study area were sampled to determine a baseline value for cesium-137 (2877 Bq m−2), which was used to predict the erosion of cultivated soils since the early 1960s. Soil redistribution estimates were calculated for idealized positions (upper, middle, lower) on medium-textured cultivated hillslopes, and for the total erosional portion of the hillslopes. Mean hillslope soil erosion rates were 23 ± 8 t ha−1 yr−1 for slopes with 0–3% gradient, 27 ± 9 t ha−1 yr−1 for 3–10% slopes, and 48 ± 16 t ha−1 yr−1 for 10–24% slopes, representing a soil removal of 3.8 cm, 4.4 cm, and 7.8 cm, respectively, since 1960. These soil losses represented between 27 and 67% of the topsoil and between 8 and 35% of the solum currently present within the eroding upslope areas. A significant positive correlation existed between the thickness of soil horizons and solums, and the rate of soil erosion on the upper and middle slope positions. The greatest erosion rates were determined for the upper slope positions, probably because of a dominance of wind and tillage erosion within the area. Soil erosion rates within slope classes decreased with increasing slope length, particularly on 10–24% slopes. Erosion by overland flow was considered to be of minor importance, especially on level landscapes (0–3% gradient) where erosion averaged 23 ± 8 t ha−1 yr−1. Erosion rates ranging between 23 and 48 t ha−1 y−1 occurred over approximately 2/3 of the cultivated study area. High rates of soil erosion over such a large portion of the landscape are alarming, considering that the accepted tolerable soil loss is 11.2–4.5 t ha−1 yr−1. Key words: Soil erosion, cesium-137, water erosion, wind erosion, hillslope


2021 ◽  
Author(s):  
Nurhussen Ahmed Mohammed ◽  
Desale Kidane Asmamaw

The severity of soil loss in the Ethiopian highlands has been increased from time to time. Hence, the assessment of soil erosion using models is very important for planning successful and sustainable soil management. This study was conducted in Bahir Dar Zuria district, Ethiopia with aiming to quantify the amount of soil loss using the GIS-based RUSLE (Revised Universal Soil Loss Equation) model. Based on the study, the most pronounced RUSLE factor that increases soil erosion was the slope length (L) and slope steepness (S). Compared with other land uses, bare land and cropland in the higher slopes were more vulnerable to erosion. As expected slope and soil losses have a direct relationship. About 80% of the study area experienced annual soil loss of less than 1.2 ton/ha/yr. Conversely, soil loss was very high for slopes greater than 30%. This indicated that slope has a great impact on regulating soil loss. The annual soil loss for cropland, vegetation, grassland, and degraded land was 19.05, 8.78, 8.82, and 71.16 ton/ha/yr., respectively. This is to means that land use land cover have a strong relationship with the amount of soil loss. The same land cover with different slopes have different soil loss amount. It was found that lack of vegetative cover during the critical period of rainfall, expansion of croplands, and absence of support practices increase soil erosion. Thus, the application of stone lines, contour tillage, terraces, and grass strip barriers are suggested to break the slope length into shorter distances, reducing overland flow velocity and soil erosion. Moreover, improving the awareness of society to reduce the illegal cutting of trees and apply conservation practices to reduce soil erosion in their farmland is very essential.


2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document