The reaction of copper ions and hypochlorite with minesite soils in relation to fungicidal activity

Soil Research ◽  
1992 ◽  
Vol 30 (5) ◽  
pp. 723 ◽  
Author(s):  
RG Gerritse ◽  
JA Adeney ◽  
G Baird ◽  
I Colquhoun

Phytophthora cinnamomi is a soil-borne pathogenic fungus and is the primary cause of dieback disease in the jarrah forests of south-west Western Australia. Treatments are needed to eliminate the fungus from infected soils. Compounds containing cupric ions (Cu2+) or hypochlorite (ClO-) have a known fungicidal activity against P. cinnamomi, but their efficacy is affected by soil factors. This study explores the possibility of containing P. cinnamomi by treatment of surface materials for haul roads at minesites in infected areas with these compounds. Solution concentrations of Cu2+ between 50 and 100 mg/L are considered to be fungicidally effective against P. cinnamomi. In samples from the lateritic regolith at the Huntly minesite of Alcoa in Western Australia, concentrations in this range are obtained after adding about 0-5 g (range = 0.3-1 g) of Cu2+ per kg of regolith material. Soil materials from mineral sand areas on the Swan Coastal Plain in Western Australia adsorb Cu2+ less strongly than the regolith materials from the Huntly minesite. Addition of about 0.1-0.2 g Cu2+ per kg is sufficient to reach a fungicidal concentration in solution in these soil materials. Movement of Cu2+ from treated surfaces of haul roads to groundwater and surface water can present a problem. For a single application, travel times of Cu2+ in both lateritic regolith and sandy soils were calculated to be = 200 years per metre. A single treatment of materials from the lateritic regolith would be effective for a period of 2-10 years, depending on the selected material. Sandy soils would have to be treated once or twice a year. Colloidal particles in both surface runoff and throughflow can contribute significantly to the spread of copper in the lateritic regolith, but much less in sandy soils. Hypochlorite is rapidly reduced to chloride by organic matter in soils. At additions of about 0.5 g ClO- per gram of organic carbon, however, hypochlorite can be an effective fungicide against P. cinnamomi.

1996 ◽  
Vol 44 (4) ◽  
pp. 433 ◽  
Author(s):  
BL Shearer ◽  
M Dillon

Estimates of the susceptibility of plant species in Banksia woodland to Phytophthora cinnamomi Rands were obtained by determining the incidence of plant death and frequency of isolation of the pathogen, among species occurring in 46 disease centres on the Swan Coastal Plain south of Perth, Western Australia. In the disease centres, dicotyledons outnumbered monocotyledons. About half of all species occurring in the disease centres were from four families of dicotyledons, with the largest number of species from the Myrtaceae, Proteaceae and Papilionaceae. The greatest number of species of monocotyledons were from the Anthericaceae and Cyperaceae. No deaths were recorded for 47% of species found in three or more disease centres. These species were mainly from the Cyperaceae, Haemodoraceae, Myrtaceae and Papilionaceae. The species that tended to die frequently in disease centres were mainly from the Papilionaceae, Proteaceae, Epacridaceae, Xanthorrhoeaceae and the Zamiaceae. Phytophthora cinnamomi was isolated from 26 of the 95 species occurring in three or more disease centres. For most species, the frequency of isolation of P. cinnamomi from recently dead plants was much less than the frequency of dead plants sampled. Isolation from plants was less frequent than from adjacent soil. The pathogen was isolated from recently dead plants or soil mainly for species of the Proteaceae, Myrtaceae, Papilionaceae, Dasypogonaceae, Iridaceae and Xanthorrhoeaceae. Cross-tabulation of species by incidence of plant death and isolation of P. cinnamomi from plant and soil, provided the opportunity to classify the response of plant species to infection by P. cinnamomi.


1990 ◽  
Vol 36 (3) ◽  
pp. 183-192 ◽  
Author(s):  
A. R. Hardham ◽  
E. Suzaki

Glycoconjugates on the surface of zoospores and cysts of the pathogenic fungus Phytophthora cinnamomi have been studied using fluorescein isothiocyanate labelled lectins for fluorescence microscopy and flow cytometry, and ferritin- and gold-labelled lectins for ultrastructural analysis. Of the five lectins used, only concanavalin A (ConA) binds to the surface of the zoospores, including the flagella and water expulsion vacuole. This suggests that of accessible saccharides, glucosyl or mannosyl residues predominate on the outer surface of the zoospore plasma membrane. Early in encystment, a system of flat disc-like cisternae, which underlie the zoospore plasma membrane, vesiculate. These and other small peripheral vesicles quickly disappear. After the induction of encystment, ConA is no longer localised close to the plasma membrane but binds to material loosely associated with the cell surface. Quantitative measurements by flow cytometry indicate that the ConA-binding material is gradually lost from the cell surface. The cyst wall is weakly labelled, but the site of germ tube emergence stains intensely. During the first 2 min after the induction of encystment, material that binds soybean agglutinin, Helix pommatia agglutinin, and peanut agglutinin appears on the surface of the fungal cells. The distribution of this material, rich in galactosyl or N-acetyl-D-galactosaminosyl residues, is initially patchy, but by 5 min the material evenly coats most of the cell surface. Labelling of zoospores in which intracellular sites are accessible indicates that the soybean agglutinin binding material is stored in vesicles that lie beneath the plasma membrane. Quantitation of soybean agglutinin labelling shows that maximum binding occurs 2–3 min after the induction of encystment. Key words: cell surface, flow cytometry, lectins, pathogenic fungi, Phytophthora cinnamomi.


1982 ◽  
Vol 30 (2) ◽  
pp. 139 ◽  
Author(s):  
WM Blowes ◽  
WA Heather ◽  
N Malajczuk ◽  
SR Shea

Native forest at Durras in south-eastern New South Wales and Jarrahdale in south-western Western Australia was examined for the presence of Phytophthora cinnamomi by two sampling and isolation techniques. With the lupin seeding baiting technique, randomly selected samples of soil and fine roots collected from the New South Wales site yielded P. cinnamomi when baited, while similar baiting of comparable samples from Western Australia failed. Direct plating of samples of upper roots and root collars of recently dead Banksia grandis from Western Australian sites yielded P. cinnamomi, while this organism was not isolated from comparable samples of chlorotic Macrozamia communis collected at the New South Wales site. The results suggest that the form of occurrence of P. cinnamomi and its association with disease in Australia vary in different situations. Viewing each situation independently might ensure the adoption of control/prevention strategies appropriate to all.


2010 ◽  
Vol 24 (3) ◽  
pp. 209 ◽  
Author(s):  
Michael G. Rix ◽  
Mark S. Harvey ◽  
J. Dale Roberts

South-western Western Australia is a biodiversity hotspot, with high levels of local endemism and a rich but largely undescribed terrestrial invertebrate fauna. Very few phylogeographic studies have been undertaken on south-western Australian invertebrate taxa, and almost nothing is known about historical biogeographic or cladogenic processes, particularly on the relatively young, speciose Quaternary sand dune habitats of the Swan Coastal Plain. Phylogeographic and taxonomic patterns were studied in textricellin micropholcommatid spiders belonging to the genus Raveniella Rix & Harvey. The Micropholcommatidae is a family of small spiders with a widespread distribution in southern Western Australia, and most species are spatially restricted to refugial microhabitats. In total, 340 specimens of Raveniella were collected from 36 surveyed localities on the Swan Coastal Plain and 17 non-Swan Coastal Plain reference localities in south-western Western Australia. Fragments from three nuclear rRNA genes (5.8S, 18S and ITS2), and one mitochondrial protein-coding gene (COI) were used to infer the phylogeny of the genus Raveniella, and to examine phylogeographic patterns on the Swan Coastal Plain. Five new species of Raveniella are described from Western Australia (R. arenacea, sp. nov., R. cirrata, sp. nov., R. janineae, sp. nov., R. mucronata, sp. nov. and R. subcirrata, sp. nov.), along with a single new species from south-eastern Australia (R. apopsis, sp. nov.). Four species of Raveniella were found on the Swan Coastal Plain: two with broader distributions in the High Rainfall and Transitional Rainfall Zones (R. peckorum Rix & Harvey, R. cirrata); and two endemic to the Swan Coastal Plain, found only on the western-most Quindalup dunes (R. arenacea, R. subcirrata). Two coastally restricted species (R. subcirrata, R. janineae) were found to be morphologically cryptic but genetically highly distinct, with female specimens morphologically indistinguishable from their respective sister-taxa (R. cirrata and R. peckorum). The greater Perth region is an important biogeographic overlap zone for all four Swan Coastal Plain species, where the ranges of two endemic coastal species join the northern and south-western limits of the ranges of R. peckorum and R. cirrata, respectively. Most species of Raveniella were found to occupy long, highly autapomorphic molecular branches exhibiting little intraspecific variation, and an analysis of ITS2 rRNA secondary structures among different species of Raveniella revealed the presence of an extraordinary hypervariable helix, ranging from 31 to over 400 nucleotides in length.


Sign in / Sign up

Export Citation Format

Share Document