035. THE ROLE OF THE SERTOLI CELL IN REGULATING SPERMATOGENESIS, IMMUNE RESPONSES AND INFLAMMATORY DISEASE: MULTIPLE FUNCTIONS, COMMON MECHANISMS?

2009 ◽  
Vol 21 (9) ◽  
pp. 8
Author(s):  
M. P. Hedger ◽  
J. A. Muir ◽  
W. R. Winnall

There is increasing evidence that the Sertoli cell, in addition to modulating responses to direct antigenic challenges (eg. intratesticular allografts), is central to the response of the testis to inflammation and infection. Systemic inflammation exerts an inhibitory effect on spermatogenesis, which has been attributed to the effects of fever, vascular disturbances, or loss of androgenic support. However, recent studies point to more direct effects of inflammation on spermatogenesis. The discovery that Sertoli cells express Toll-like receptors (TLR), and react to TLR ligands by producing inflammatory cytokines and other mediators, provides a mechanism to account for this direct inhibition. Moreover, the pattern of cytokines produced by the Sertoli cell during inflammation is highly characteristic. For example, when stimulated with TLR ligands the Sertoli cell produces the pro-inflammatory cytokines, interleukin-1α (IL1α) and IL6, and the regulatory cytokine, activin A, but does not produce IL1β and tumour necrosis factor-α, which are major pro-inflammatory products of activated macrophages. The disruptive effects of inflammation on spermatogenesis may be attributed to the elevated production of these cytokines, all of which have stimulatory or inhibitory effects on germ cell mitosis, meiosis and apoptosis and Sertoli cell tight junction formation, In addition, activation of TLR/IL1 mediated inflammatory pathways in the Sertoli cell inhibits its ability to respond to its principal trophic hormone, follicle-stimulating hormone. Studies on the regulation of these interactions will further establish the role of the Sertoli cell in inflammation and infection. However, such studies also have important implications for normal Sertoli cell function, as TLRs can respond to endogenous ligands as well. Consequently, the Sertoli cell may be viewed as a sentinel cell, supporting and protecting spermatogenesis when conditions are optimal, but rapidly shutting down spermatogenesis in the presence of infection or illness. Intriguingly, these apparently disparate roles appear to involve common inflammation-related mechanisms.

1996 ◽  
Vol 24 (2) ◽  
pp. 181-189 ◽  
Author(s):  
Mark E. Blazka ◽  
Michael R. Elwell ◽  
Steve D. Holladay ◽  
Ralph E. Wilson ◽  
Michael I. Luster

2002 ◽  
Vol 283 (5) ◽  
pp. H1785-H1794 ◽  
Author(s):  
David X. Zhang ◽  
Fu-Xian Yi ◽  
Ai-Ping Zou ◽  
Pin-Lan Li

The present study tested the hypothesis that ceramide, a sphingomylinase metabolite, serves as an second messenger for tumor necrosis factor-α (TNF-α) to stimulate superoxide production, thereby decreasing endothelium-dependent vasorelaxation in coronary arteries. In isolated bovine small coronary arteries, TNF-α (1 ng/ml) markedly attenuated vasodilator responses to bradykinin and A-23187. In the presence of N G-nitro-l-arginine methyl ester, TNF-α produced no further inhibition on the vasorelaxation induced by these vasodilators. With the use of 4,5-diaminofluorescein diacetate fluorescence imaging analysis, bradykinin was found to increase nitric oxide (NO) concentrations in the endothelium of isolated bovine small coronary arteries, which was inhibited by TNF-α. Pretreatment of the arteries with desipramine (10 μM), an inhibitor of acidic sphingomyelinase, tiron (1 mM), a superoxide scavenger, and polyethylene glycol-superoxide dismutase (100 U/ml) largely restored the inhibitory effect of TNF-α on bradykinin- and A-23187-induced vasorelaxation. In addition, TNF-α activated acidic sphingomyelinase and increased ceramide levels in coronary endothelial cells. We conclude that TNF-α inhibits NO-mediated endothelium-dependent vasorelaxation in small coronary arteries via sphingomyelinase activation and consequent superoxide production in endothelial cells.


Author(s):  
Mahdi Atabaki ◽  
Zhaleh Shariati-Sarabi ◽  
Mehdi Barati ◽  
Jalil Tavakkol-Afshari ◽  
Mojgan Mohammadi

T helper (Th)-17 cells are a distinct and important subset of Th cells and their functions are due to the ability of production and secretion of key cytokines in the immune system such as interleukin (IL)-17, IL-22, IL-21, and tumor necrosis factor-α (TNF-α). According to these cytokines, these cells have vital roles in the pathogenesis of the disease such as rheumatoid arthritis (RA) and osteoarthritis (OA). Nowadays, microRNAs (miRNAs) are defined as essential regulators of cell function by targeting transcription factors and other elements that act in cells to control gene expression. The purpose of this study was to detect and investigate articles evaluating the function of miRNA in Th-17 cell performance. The language was restricted to English and the search was done in PubMed, Web of Science and Embase. In this review, we first explain the role of effective factors in the function of Th17 lymphocytes, and then, we summarize the performance of several miRNAs involved in the activation and appropriate functions of Th17 cells in the immune system.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 493
Author(s):  
 Chung-Yu Chen ◽  
Chien-Rung Chen ◽  
Chiao-Nan Chen ◽  
Paulus S. Wang ◽  
Toby Mündel ◽  
...  

The purpose of this study is to evaluate the amphetamine effects on progesterone and estradiol production in rat granulosa cells and the underlying cellular regulatory mechanisms. Freshly dispersed rat granulosa cells were cultured with various test drugs in the presence of amphetamine, and the estradiol/progesterone production and the cytosolic cAMP level were measured. Additionally, the cytosolic-free Ca2+ concentrations ([Ca2+]i) were measured to examine the role of Ca2+ influx in the presence of amphetamine. Amphetamine in vitro inhibited both basal and porcine follicle-stimulating hormone-stimulated estradiol/progesterone release, and amphetamine significantly decreased steroidogenic enzyme activities. Adding 8-Bromo-cAMP did not recover the inhibitory effects of amphetamine on progesterone and estradiol release. H89 significantly decreased progesterone and estradiol basal release but failed to enhance a further amphetamine inhibitory effect. Amphetamine was capable of further suppressing the release of estradiol release under the presence of nifedipine. Pretreatment with the amphetamine for 2 h decreased the basal [Ca2+]i and prostaglandin F2α-stimulated increase of [Ca2+]i. Amphetamine inhibits progesterone and estradiol secretion in rat granulosa cells through a mechanism involving decreased PKA-downstream steroidogenic enzyme activity and L-type Ca2+ channels. Our current findings show that it is necessary to study the possibility of amphetamine perturbing reproduction in females.


Sign in / Sign up

Export Citation Format

Share Document