501. BACTERIOSPERMIA AND ITS CONTROL IN BUBALINE SEMEN

2009 ◽  
Vol 21 (9) ◽  
pp. 102
Author(s):  
S. M. H. Andrabi ◽  
M. Shahab

The present study was designed to investigate the bacterial species incriminated in bubaline semen and to find out the effectiveness of antibiotics (GTLS; gentamycin, tylosin and linco-spectin or SP; streptomycin and penicillin) in cryodiluent on bacterial control and quality of buffalo bull spermatozoa. For this purpose four experiments were conducted. In experiment 1, a total of 11 bacterial species were identified from buffalo ejaculates. The predominant bacteria were Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa in the ejaculates. In experiment 2, total aerobic bacterial counts in post-thaw samples were lower (P<0.05) in GTLS than in SP or NC (negative control). Fewer bacterial genera were identified in semen samples having GTLS than SP. Majority of the bacterial isolates from ejaculates showed more sensitivity towards GTLS than SP. In experiment 3, motilities (visual and computer-assisted), velocities (straight-line, average path and curvilinear), amplitude of lateral head displacement and plasma membrane integrity in post-thaw semen samples did not differ (P>0.05) due to antibiotics. Spermatozoal abnormalities (acrosome, head, mid-piece and tail) were lower (P<0.05) in GTLS and SP than in NC. In experiment 4, the fertility rates for SP-based vs. GTLS-containing frozen semen of buffalo bull were 42.8 and 55.2%, respectively. The results for GTLS were significantly higher than SP. The fertility rates also differed significantly in the first and second batch of inseminations performed with SP or GTLS-based cryopreserved semen of buffalo bull. In conclusion, a number of bacterial species are isolated from bubaline semen. Bacterial and seminal quality measured by standard laboratory tests and field fertility trials indicate that GTLS is more suitable in extender for cryopreservation of buffalo bull spermatozoa.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 115-115
Author(s):  
Carl R Dahlen ◽  
Sarah R Underdahl ◽  
Matthew S Crouse ◽  
Kacie L McCarthy ◽  
Cierrah J Kassetas ◽  
...  

Abstract Fifteen mature beef bulls (BW = 800.4 ± 17.4 kg) were used in a 112-d experiment to evaluate effects of divergent planes of nutrition on motility and kinematic properties of fresh and frozen-thawed semen. Bulls were ranked by BW and randomly assigned to one of two treatments: 1) managed on a positive plane of nutrition (POS, n = 8), or 2) managed on a negative plane of nutrition (NEG, n = 7). Bulls were fed a common diet, adjusted biweekly to achieve targeted weight loss or gain of 12.5% of original BW. On d 112, electroejaculation was used to collect 2 ejaculates from each bull, which were combined. An aliquot of fresh semen was evaluated via computer-assisted semen analysis (CASA; IVOS II, Hamilton Thorne, Beverly, MA, USA) for motility and kinematic properties. Remaining semen was extended and frozen. Frozen semen was thawed for 40 s and held in a heating block at 37°C, then evaluated via CASA at 0 and 3 h post-thaw. Data were analyzed in the MIXED procedure of SAS, with data for post-thaw analysis evaluated as repeated measures in time. Treatment did not influence ejaculate volume or concentration (P ≤ 0.19). In fresh ejaculates no impacts (P ≤ 0.29) of treatment were observed for motility or kinematic properties. In frozen-thawed ejaculates, however, bulls in the NEG treatment had greater (P ≤ 0.02) proportions of motile and progressively motile sperm compared with POS. In sperm classified as motile or progressively motile, NEG had greater (P ≤ 0.002) average path and straight line velocities, and greater (P ≤ 0.05) amplitude of lateral head displacement than POS. Treatment impacts observed in frozen, but not fresh, indicate that sperm metabolism, mitochondrial function, antioxidant capacity, or other factors may be influenced by plane of nutrition resulting in altered motility and kinematic properties.


2006 ◽  
Vol 18 (2) ◽  
pp. 150
Author(s):  
G. M. Brogliatti ◽  
G. Larraburu ◽  
R. Cavia ◽  
M. E. Carini

The process of cryopreservation of bull semen in liquid nitrogen at −196°C is usually carried out after 3 to 6 h of refrigeration at 4°C post-collection. To guarantee the quality of the final product, the frozen straws are evaluated after cryopreservation. The seminal samples are usually stabilized during 48 h before being analyzed (Hafez, Reproduction and Artificial Insemination in Animals, 1989); this would retard the possible commercialization. The objective of the present study was to determine motility parameters and viability of semen doses stabilized by 1 h or more than 48 h in liquid nitrogen at −196°C. A total of 122 ejaculated from 23 different adult bulls (Angus, Brangus, Braford, and Hereford) were evaluated in an artificial insemination center between January and April 2005. The semen was diluted in a semi-defined semen extender (Andromed, Minitub, Germany) and frozen in an automatic freezer (Digicool, IMV, France). Parameters of velocity average path (VAP, μm/s), velocity straight line (VSL, µm/s), amplitude lateral head (ALH, µm), linearity (LIN, %), percentage of rapid cells (RAPID, %), and viability (VIA, %) were determined by Computer Assisted Semen Analysis (CASA, HTM-ceros 12.1, Berkeley, CA, USA). The obtained results were analyzed statistically with T Student and are summarized in Table 1. The results indicate that there is no difference in the velocity of the spermatozoa evaluated 1 h or 48 h post-frozen. There is no difference in VAP, VSL, movement of amplitude lateral head (ALH), or linearity (LIN). The percentage of viable spermatozoa was not affected in either group. Statistical analysis indicates that there is no difference (P > 0.05) in any of the evaluated parameters. The results demonstrate that spermatic motility and viability of frozen bull semen could be evaluated before 48 h post-frozen. This allows reduction of the time between freezing and evaluation and immediate availability of the bull straws. Table 1. Parameters of motility and viability at 1 h vs. 48 h of post-frozen stabilization time This research was supported by Centro Genético Bovino EOLIA S.A.


2010 ◽  
Vol 22 (1) ◽  
pp. 204
Author(s):  
J. Dorado ◽  
M. J. Galvez ◽  
M. R. Murabito ◽  
S. Demyda ◽  
L. J. De Luca ◽  
...  

Tris-egg yolk-based diluents provide adequate cryoprotection for the sperm of most species. This study was conducted to compare the ability of Tris-glucose extender containing 2 different concentrations of egg yolk to maintain sperm motility and acrosome integrity of canine spermatozoa during 72 h of preservation. For this purpose, a total of 20 ejaculates from 4 clinically healthy dogs (2 Spanish Greyhound, 1 German Pointer, and 1 Crossbreed) were collected by digital manipulation. The sperm-rich fraction of each ejaculate was divided into 2 aliquots. Then, they were diluted in Tris-based extender and centrifuged at 700g for 8 min. Sperm pellets were resuspended in either Tris buffer added to 20% (EY20) or 10% centrifuged egg yolk (EY10) and cooled to 5°C over 72 h. The effects of these extenders on motility and acrosome integrity were assessed objectively using a computer-aided semen analyzer (Sperm Class Analyzer, Microptic SL, Spain) and Spermac® staining, respectively. Each cooled-rewarmed semen sample was evaluated after 24, 48, and 72 h of preservation. Sperm motion parameters shown by computer-assisted semen analysis (CASA) are progressively motile (PMS) and motile spermatozoa (MS), curvilinear velocity (CLV), average path velocity (APV), progressive speed (SLV), and lateral head displacement (LHD). Data were statistically analysed by ANOVA. Dependent variables expressed as percentages were arsine-transformed before analysis. Differences between mean values were evaluated by the Duncan method. Data were presented as mean ± SEM. Differences were considered significant when P < 0.05. Analyses were performed using the statistical package SPSS 12.0. A total of 98 172 motile sperm trajectories were analyzed by CASA: 52 259 in EY20 and 45 913 in EY10. After 24, 48, and 72 h of preservation, MS and PMS were statistically higher (P < 0.01) in EY20. No significant differences were found for LHD using either extender over a 72-h period. No significant differences were observed for CLV using either extender during the first 2 days. At Day 3, CLV data were significantly higher (P < 0.01) in EY20. Similarly, from Day 2, APV was significantly higher (P < 0.001) in EY20. After 24 h of preservation, SLV was statistically higher (P < 0.001) in EY10, whereas the opposite tendency was found at Day 3. No significant differences were observed for SLV using either extender after 48 h of preservation. During the first 2 days, acrosome integrity was statistically higher (P < 0.001) in EY20. At hour 72, higher acrosome integrity (P < 0.001) was observed in EY10. In conclusion, we have observed that the EY20 extender provided higher motility after 72 h of chilled preservation; however, the acrosome membrane integrity was better preserved in EY10.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1506
Author(s):  
Hongtao Wang ◽  
Ping Lu ◽  
Chongshan Yuan ◽  
Jing Zhao ◽  
Hongyu Liu ◽  
...  

The purpose of this study was to determine the effects of apigenin and astragalus polysaccharides on the cryopreservation of bovine semen. Apigenin, astragalus polysaccharides, or their combination were added to a frozen diluent of bovine semen. Afterwards, Computer Assisted Semen Analysis (CASA), membrane functionality, acrosome integrity, mitochondrial integrity, CAT, SOD, GSH-Px, MDA, and ROS detection were conducted. The results showed that adding 0.2 mmol/L AP or 0.5 mg/mL APS could improve the quality of frozen sperm. Compared to 0.2 mmol/L AP alone, the combination of 0.2 mmol/L AP and 0.3 mg/mL APS significantly increased the total motility (TM), average path distance (DAP), straight line distance (DSL), average path velocity (VAP), curvilinear velocity (VCL), wobble (WOB), and sperm CAT and SOD levels (p < 0.05), while reducing the ROS and MDA levels (p < 0.05). These results indicated that the addition of 0.2 mmol/L AP or 0.5 mg/mL APS alone has a protective effect on the freezing of bovine semen. Compared to the addition of 0.2 mmol/L AP, a combination of 0.2 mmol/L AP and 0.3 mg/mL APS could further improve the quality of frozen semen.


2020 ◽  
Vol 72 (2) ◽  
pp. 295-304
Author(s):  
E.C.B. Silva ◽  
J.I.T. Vieira ◽  
I.H.A.V. Nery ◽  
R.A.J. Araújo Silva ◽  
V.F.M.H. Lima ◽  
...  

ABSTRACT The objectives of this study were to evaluate goat sperm sorting in continuous Percoll® density gradients and gamete freezability, in the presence or absence of phenolic antioxidants. For this, semen pools were sorted, frozen, and evaluated. The non-selected group (NSg) presented lower progressive motility (PM), linearity (LIN), straightness (STR), and wobble (WOB) than the selected groups, and straight line velocity (VSL) compared to those with catechin or resveratrol. The amplitude of lateral head displacement (ALH) was higher in NSg, and quercetin reduced the mitochondrial membrane potential (MMP). After thawing, the NSg presented lower PM than the selected groups, VSL and VAP (average path velocity) than the selected group with or without catechin, LIN and WOB than the selected with or without catechin or resveratrol, and STR than the selected with catechin. Moreover, NSg presented higher ALH and BCF than the samples selected with or without catechin. Plasma membrane integrity and intact and living cells were higher in the selected groups, and MMP was lower in the NSg and the selected group with quercetin. Thus, centrifugation in Percoll® continuous density gradients is a viable methodology to select goat sperm compatible with the freezing, especially in the presence of catechin or resveratrol.


2019 ◽  
Vol 31 (1) ◽  
pp. 142
Author(s):  
M. A. Lagares ◽  
N. C. Alves ◽  
A. L. A. Guimaraes ◽  
S. B. Luz ◽  
S. A. Diniz ◽  
...  

The pattern of sperm transport and survival in the mare’s reproductive tract is different between fresh and frozen-thawed semen. A probable reason for this difference is the biophysiological changes in sperm during cryopreservation of equine semen. These changes can impair motility of stallion sperm after thawing. The aim of the present work was to test the effect of different caffeine concentrations on stallion sperm motility after thawing. One ejaculate of 9 stallions was frozen with the INRA82 frozen extender, and after thawing, different caffeine concentrations were added to the semen samples according to the treatments: control INRA82 without caffeine addition (T1), T1+1mM caffeine (T2), T1+2mM caffeine (T3), T1+3mM caffeine (T4), T1+5mM caffeine (T5), T1+7.5mM caffeine (T6), and T1+10mM caffeine (T7). The analysis of sperm motility parameters was performed with a computer-assisted semen analyser in 4 time periods: immediately after semen samples thawing (t0) and 15min (t15), 30min (t30), and 40min (t40) after semen sample thawing. One semen sample of each treatment was thawed, and an aliquot was analysed for the following computer-assisted semen analysis characteristics: velocity curvilinear (VCL; µm s−1), velocity straight line (µm s−1), velocity average path (µm s−1), linearity (%), straightness (%), wobble (%), amplitude of lateral head displacement (µm), beat cross frequency (BCF; Hz), and percentage of total sperm motility (TM) and progressive sperm motility. The statistical analysis was performed with ANOVA and Duncan’s test. The sperm parameters progressive sperm motility, linearity, wobble, and amplitude of lateral head displacement did not differ among the treatments (P&gt;0.05). Immediately after addition (t0) of 5, 7.5, and 10mM caffeine concentrations, an increase of TM was observed (T5: 53.1%; T6: 45.9%; and T7: 47.4%) compared with the other treatments (T1: 37.5%; T2: 36.0%; T3: 36.6%; and T4: 32.3%; P&lt;0.05). Although after 15min of incubation (t15) the TM decreased compared with t0 in T5, T6, and T7 treatments, the percentage was comparable with the other treatments at t15, t30, and t40. The mean value for TM was higher with 5mM caffeine compared with the control group (38.6% v. 34.7%; P&lt;0.05), whereas for the 10mM caffeine treatment velocity straight line (19.9v. 17.1µm s−1), velocity average path (25.6v. 22.9µm s−1), and straightness (75.4v. 72.3%) were higher than the control (P&lt;0.05). For the 5, 7.5, and 10mM caffeine treatments, VCL and BCF were higher than the control (VCL: 33.9, 34.5, 36.8, and 31.5µm s−1, respectively; BCF: 8.1, 8.6, 9.0, and 7.2Hz, respectively). The remaining motility parameters did not differ until 40min after the treatment (P&lt;0.05). In conclusion, the addition of 5, 7.5, and 10mM caffeine concentrations after semen thawing increased TM and most of the sperm motility characteristics. However, given the complexities of sperm transport, capacitation, and so on, further experiments are needed to test whether caffeine treatments could be used to improve the fertilization rate of frozen-thawed equine semen.


2018 ◽  
Vol 30 (1) ◽  
pp. 144
Author(s):  
A. Martins ◽  
F. N. Marqui ◽  
T. E. Cruz ◽  
T. I. H. Berton ◽  
D. G. Souza ◽  
...  

We previously reported that single layer centrifugation (SLC) with Percoll® (GE Healthcare, Uppsala, Sweden) of fresh bovine semen resulted in improved sperm progressive motility and movement, as evidenced by computer-assisted sperm analyzer (CASA) after freezing-thawing. However, no report has been found in the literature on the use of Percoll Plus® (PP; GE Healthcare), a nontoxic colloid, for the same purpose. Thus, this study aimed to verify the effects of SLC-PP before bull sperm freezing on sperm kinematics after cryopreservation. Ejaculates were collected from 3 Nellore bulls (6 from each) using an artificial vagina. After collection, the semen was assessed and pooled, and then 1 billion spermatozoa either diluted [D; 1:2 (v/v)] in freezing extender (FE, without glycerol) or undiluted (UD) was layered on top of a 9-mL column of PP (in 15-mL centrifuge tubes) at concentrations of 70% or 90% to form the 70D, 70UD, 90D, and 90UD treatment groups. Following centrifugation for 13 min at 839 × g [except for the control (C) group], the supernatant was removed and the sperm pellet diluted to 50 × 106 sperm mL−1 in FE medium plus glycerol. Then, frozen–thawed sperm samples were analysed by CASA (MMC Sperm, St. Petersburg, Russia) for the following parameters: total motility (TM, %), progressive motility (PM, %), curvilinear velocity (VCL, µm−1), straight line velocity (VSL, µm s−1), average path velocity (VAP, µm s−1), amplitude of lateral head displacement (ALH, µm), beat cross frequency (BCF, Hz), linearity (LIN, %), and straightness (STR, %). For statistical analyses, ANOVA and Student-Newman-Keuls test were used. Data are presented as mean ± SEM with P < 0.05 taken as significant. No difference was found among the groups for TM, VSL, BCF, and STR. However, the percentage of PM was higher (P < 0.05) in the SLC-selected sperm samples (values ranging from 42.0 ± 7.0 to 47.4 ± 11.4) than in C (28.8 ± 5.0), and ALH was lower in 70UD (1.6 ± 0.12) and 70D (1.7 ± 0.10) than in C (1.9 ± 0.2). Moreover, 70UD (49.0 ± 1.0), 90UD (50.0 ± 3.0), and 90D (50.0 ± 4.0) displayed higher percentage of LIN (P < 0.05) compared with C (45.0 ± 2.0) and 70D (48.0 ± 3.0). On the other hand, similar results were obtained for VCL (from 126.3 ± 8.0 to 130.0 ± 20.5) and VAP (from 82.7 ± 14.5 to 85.1 ± 6.9) in C, 70UD, and 70D, but these values differed (P < 0.05) from those for VCL in 90UD (104.6 ± 10.3) and 90D (97.2 ± 22.0) as well as for VAP in 90UD (72.2 ± 11.0) and 90D (71.8 ± 9.6). These are the first data demonstrating favourable influences of SLC with 70% Percoll Plus® to select distinct sperm subpopulations as evidenced by enhanced PM, LIN, and ALH. Thus, SLC-PP could optimize the production of frozen bull semen by decreasing the number of sperm per insemination dose, and help to circumvent limitations associated with the poor semen quality sometimes found in bulls of high genetic merit. This research was funded by FAPESP # 2015/20986-3, MasterFertility and Tairana Artificial Insemination Station, Brazil.


Author(s):  
P K Pathak ◽  
A J Dhami ◽  
D V Chaudhari ◽  
K K Hadiya

A study was undertaken on semen of three mature bulls each of Gir, Surti and Murrah breed to evaluate the comparative motion characteristics and kinematics of their fresh and frozen-thawed spermatozoa by Biovis CASA. The ejaculates (n= 24/breed) having >75% initial motility were diluted @ 80 million sperm/ml using TFYG extender and were assessed. Amongst motility traits, the total motile, rapid progressive motile and slow progressive motile spermatozoa percentage decreased significantly by 23.08 - 30.09, 43.57 - 55.18, 9.12 - 22.75 %, respectively, plessthan0.01), while non-progressive motile sperm (4.78 - 21.48%) and immotile sperm (164.38 - 178.38 %) percentage increased significantly ( plessthan0.01) in frozen-thawed semen compared to that of fresh semen. The post-thaw quality of semen of all three breeds was in acceptable range. The mean values of sperm velocity/kinematic parameters observed in frozen-thawed semen of Gir, Surti and Murrah bulls, based on total motile sperms, viz., average path velocity, curvilinear velocity, straight line velocity, linearity, straightness, beat-cross frequency, amplitude of lateral head displacement, dancing frequency and dancing mean decreased significantly by 13.70 - 17.79; 9.76 - 12.95; 13.28 - 21.90; 7.28 - 9.68; 4.36 - 7.79; 15.56 - 25.15; 8.78 - 10.50; 6.16 - 18.67 and 12.98 - 15.96 %, respectively, as compared to that of their fresh semen samples. However, wobbling index remained almost same for both fresh and frozen semen. All motility traits differed but none of kinematics/velocity traits differed significantly between breeds/species. The values of all velocity parameters for progressive motile sperms were higher than total motile sperms in all three breeds. The effect of freezing-thawing on velocity and kinematic attributes was much less compared to absolute sperm motility, and both the fresh and frozen-thawed sperms behaved identically with respect to their velocity and kinematics. The rapid progressive motile sperm in both fresh (r=0.41 to 0.92) and frozen-thawed (r=044 to 0.88) semen had significant correlations with most of their velocity traits, and the later were significantly and positively or negatively inter-related among each other in semen of all three breeds. It was therefore concluded that cryopreservation process significantly reduces the motility and kinematics attributes of bovine spermatozoa and, CASA analysis of fresh semen for motility and velocity traits could predict the post-thawed sperm motility and velocity/ kinematics of spermatozoa.


Author(s):  
Raushan K Singh ◽  
A. Kumaresan ◽  
M. A. Mir ◽  
P. Kumar ◽  
S. Chhillar ◽  
...  

The present study was undertaken to identify the differences in sperm kinematics between buffalo bulls with different fertility ratings. Murrah buffalo bulls (n=9) that were routinely used for breeding purpose under progeny testing programme were utilized for the study. Bull fertility was determined based on in vivo fertility trials and the conception rates (CR) were adjusted for different non-genetic parameters. Based on the adjusted CR, bulls were classified into high, medium and low fertile group. Frozen semen samples of these bulls were obtained and sperm kinematic parameters were assessed using a computer assisted sperm analyzer. The kinematic parameters analyzed included the curvilinear velocity (VCL), the linear velocity (VSL), the average path velocity (VAP), the amplitude of lateral head displacement (ALH), the linearity (LIN), the straightness coefficient (STR) and the beat cross frequency (BCF). In high fertile bulls, the proportion of motile spermatozoa was higher (p<0.001) than the medium and low fertile bulls. The VAP and VCL of sperm motion were significantly higher (P<0.05) in high fertile bulls compared to either medium or low fertile bulls. The VSL was significantly lower in low fertile bulls (P<0.005) compared to either high or medium fertile bulls. Spermatozoa from high fertile bulls had significantly higher (P<0.05) BCF, STR, ALH and LIN compared to either medium or low fertile bulls. Buffalo bull fertility was significantly and positively correlated with sperm motility, VAP, VSL, VCL and ALH.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
P. Perumal ◽  
S. K. Srivastava ◽  
S. K. Ghosh ◽  
K. K. Baruah

The present study was undertaken to assess the motility and velocity parameters of sperm of freezable and nonfreezable ejaculates by computer-assisted sperm analyser (CASA) such as Hamilton-Thorne Semen Analyser IVOS 11 in mithun semen. Fifty ejaculates (twenty-five ejaculates each for freezable and nonfreezable semen ejaculates) were collected from ten matured mithun bulls. CASA parameters, motility parameters such as forward progressive motility (FPM) (%), nonprogressive motility (NPM) (%), total motility (TM) (%), and static sperms (SM) (%); velocity parameters such as curvilinear velocity (VCL) (μm/sec), straight line velocity (VSL) (μm/sec), average path velocity (VAP) (μm/sec), linearity (LIN) (%), straightness (STR) (%), wobble (WOB) (%), amplitude of lateral head displacement (ALH) (μm), and beat/cross-frequency (BCF) (Hz) were measured by CASA analyser. The result revealed that these parameters varied significantly (P<0.05) between the freezable and nonfreezable ejaculates and freezable ejaculates have significantly (P<0.05) higher value than nonfreezable ejaculates. It was concluded that most of the CASA parameters were significantly lower in nonfreezable ejaculates than in freezable ejaculates in mithun and confirmed that the CASA was effective for a quick and objective analysis of motility and velocity parameters in mithun semen.


Sign in / Sign up

Export Citation Format

Share Document