Fuel reduction burning mitigates wildfire effects on forest carbon and greenhouse gas emission

2014 ◽  
Vol 23 (6) ◽  
pp. 771 ◽  
Author(s):  
Liubov Volkova ◽  
C. P. Mick Meyer ◽  
Simon Murphy ◽  
Thomas Fairman ◽  
Fabienne Reisen ◽  
...  

A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.

2021 ◽  
Vol 13 (11) ◽  
pp. 5858
Author(s):  
Kyumin Kim ◽  
Do-Hoon Kim ◽  
Yeonghye Kim

Recent studies demonstrate that fisheries are massive contributors to global greenhouse gas (GHG) emissions. The average Korean fishing vessel is old, fuel-inefficient, and creates a large volume of emissions. Yet, there is little research on how to address the GHG emissions in Korean fisheries. This study estimated the change in GHG emissions and emission costs at different levels of fishing operations using a steady-state bioeconomic model based on the case of the Anchovy Tow Net Fishery (ATNF) and the Large Purse Seine Fishery (LPSF). We conclude that reducing the fishing efforts of the ATNF and LPSF by 37% and 8% respectively would not only eliminate negative externalities on the anchovy and mackerel stock respectively, but also mitigate emissions and emission costs in the fishing industry. To limit emissions, we propose that the Korean government reduce fishing efforts through a vessel-buyback program and set an annual catch limit. Alternatively, the government should provide loans for modernizing old fishing vessels or a subsidy for installing emission abatement equipment to reduce the excessive emissions from Korean fisheries.


Author(s):  
Swithin S. Razu ◽  
Shun Takai

The aim of this paper is to study the impact of public government policies, fuel cell cost, and battery cost on greenhouse gas (GHG) emissions in the US transportation sector. The model includes a government model and an enterprise model. To examine the effect on GHG emissions that fuel cell and battery cost has, the optimization model includes public policy, fuel cell and battery cost, and a market mix focusing on the GHG effects of four different types of vehicles, 1) gasoline-based 2) gasoline-electric hybrid or alternative-fuel vehicles (AFVs), 3) battery-electric (BEVs) and 4) fuel-cell vehicles (FCVs). The public policies taken into consideration are infrastructure investments for hydrogen fueling stations and subsidies for purchasing AFVs. For each selection of public policy, fuel cell cost and battery cost in the government model, the enterprise model finds the optimum vehicle design that maximizes profit and updates the market mix, from which the government model can estimate GHG emissions. This paper demonstrates the model using FCV design as an illustrative example.


2015 ◽  
Vol 787 ◽  
pp. 187-191
Author(s):  
P.M. Sivaram ◽  
N. Gowdhaman ◽  
D.Y. Ebin Davis ◽  
M. Subramanian

Global warming and climate change are the foremost environmental challenges facing the world today. It is our responsibility to minimize the consumption of energy and hence reduce the emissions of greenhouse gases. Companies choose ‘Carbon Footprint’ as a tool to calculate the greenhouse gas emission to show the impact of their activities on the environment. In this working paper, we assess the carbon foot print of an educational institution and suggest suitable measures for reducing it. Greenhouse gas emitting protocol for an academic institution in terms of tones of equivalent CO2 per year is projected using three basic steps includes planning (assessment of data’s), calculation and estimation of CO2 emitted. The estimation of carbon foot print is calculated by accounting direct emission from sources owned/controlled by the educational institution and from indirect emission i.e. purchased electricity, electricity produced by diesel Generator (DG), transport, cooking (Liquefied Petroleum Gas) and other outsourced distribution. The CO2 absorbed by trees are also accounted. Some of the options are identified in order to reduce CO2 level. The information of corporate carbon footprint helps us identifying the Green House Gases (GHG) emission “hot spots” and identifies where the greatest capacity exists in order to reduce the GHG emissions. The main prioritization goes to transport and then followed by DG, cooking and then electricity. The per capita CO2 emission and the total CO2 emission for a typical educational institution are estimated.


Sign in / Sign up

Export Citation Format

Share Document