scholarly journals Fisheries: A Missing Link in Greenhouse Gas Emission Policies in South Korea

2021 ◽  
Vol 13 (11) ◽  
pp. 5858
Author(s):  
Kyumin Kim ◽  
Do-Hoon Kim ◽  
Yeonghye Kim

Recent studies demonstrate that fisheries are massive contributors to global greenhouse gas (GHG) emissions. The average Korean fishing vessel is old, fuel-inefficient, and creates a large volume of emissions. Yet, there is little research on how to address the GHG emissions in Korean fisheries. This study estimated the change in GHG emissions and emission costs at different levels of fishing operations using a steady-state bioeconomic model based on the case of the Anchovy Tow Net Fishery (ATNF) and the Large Purse Seine Fishery (LPSF). We conclude that reducing the fishing efforts of the ATNF and LPSF by 37% and 8% respectively would not only eliminate negative externalities on the anchovy and mackerel stock respectively, but also mitigate emissions and emission costs in the fishing industry. To limit emissions, we propose that the Korean government reduce fishing efforts through a vessel-buyback program and set an annual catch limit. Alternatively, the government should provide loans for modernizing old fishing vessels or a subsidy for installing emission abatement equipment to reduce the excessive emissions from Korean fisheries.

Author(s):  
Swithin S. Razu ◽  
Shun Takai

The aim of this paper is to study the impact of public government policies, fuel cell cost, and battery cost on greenhouse gas (GHG) emissions in the US transportation sector. The model includes a government model and an enterprise model. To examine the effect on GHG emissions that fuel cell and battery cost has, the optimization model includes public policy, fuel cell and battery cost, and a market mix focusing on the GHG effects of four different types of vehicles, 1) gasoline-based 2) gasoline-electric hybrid or alternative-fuel vehicles (AFVs), 3) battery-electric (BEVs) and 4) fuel-cell vehicles (FCVs). The public policies taken into consideration are infrastructure investments for hydrogen fueling stations and subsidies for purchasing AFVs. For each selection of public policy, fuel cell cost and battery cost in the government model, the enterprise model finds the optimum vehicle design that maximizes profit and updates the market mix, from which the government model can estimate GHG emissions. This paper demonstrates the model using FCV design as an illustrative example.


2020 ◽  
Vol 42 (12) ◽  
pp. 637-644
Author(s):  
Yoosung Park ◽  
Sung-Mo Yeon ◽  
Kyu-Hyun Park

Objectives:A whole process greenhouse gas emission factor was developed considering the direct greenhouse gas emission from the decomposition of livestock manure provided by the IPCC guidelines and the energy consumption of manure management systems.Methods:Greenhouse gas generated by animal manure management is divided into direct greenhouse gas emission by decomposition of manure and greenhouse gas effect in the entire process due to energy use by operating manure management systems. By obtaining and summing them, the whole process greenhouse gas emission factor for the livestock manure treatment system was calculated.Results and Discussion:Among the pig manure management systems, the greenhouse gas emission factors for composting, purification and liquefaction were calculated as 128 kgCO2-eq./ton, 123 kgCO2-eq./ton, 119 kgCO2-eq./ton, respectively. It was analyzed that 20.7% to 24.1% of greenhouse gas emissions generated in the process of managing manure were due to electricity use. As a result of analyzing the change in the emission factor according to the change in GHG emissions of the national electric power according to the 8th Basic Plan for Electricity Supply and Demand, a change in emission of about 6% was confirmed. Based on the results of this study and analysis of direct GHG emissions from manure management in three major Western European countries, France, Germany, and the Netherlands, based on the manure management emission factor in 2017, GHG emissions of 48.9% to 70% compared to this study in all countries.Conclusions:In the greenhouse gas emission factor for the pig manure management system, the greenhouse gas emission from energy used in the manure management system operation represents a contribution of more than 20%, so improvement of energy efficiency of the manure management system in the future can contribute to the reduction of greenhouse gas emission. As the GHG emissions of the pig manure management system are expected to change substantially according to the change in the power grid composition ratio according to the 8th Basic Plan for Electricity Supply and Demand, it is necessary to study the application plan in preparation for the implementation of product environmental footprint certification for livestock products in the future. As a result of comparing direct GHG emissions by manure management with major Western European countries, the difference in emissions was found to be large, suggesting the need to develop a Tier 2 emission factor suitable for the situation in Korea.


2021 ◽  
Vol 7 (1) ◽  
pp. 13-35
Author(s):  
Nima Norouzi ◽  
Mohammad Ali Dehghani

Taking Iran as the 7th Greenhouse Gas (GHG) emission source of the world, the country contains a high potential for the emission management plans and studies. As the economy is a significant factor in the greenhouse gas emission, studying the economy and GHG emission integrated relations must be taken into account of every climate change and environmental management plan. This paper investigates the relationships among the economic, demographic, foreign policies, and many other domestic and foreign parameters, which are illustrated by sixth Iranian document over development and GHG emission in three progress scenarios made for this plan. In this paper, all the significant GHG emissions such as CO<sub>2</sub>, SO<sub>2</sub>, NO<sub>x</sub>, hydrocarbons, and CO in the period of 2014-2020 are being studied. As the results show, the number of emissions is directly related to domestic and foreign parameters, which means a better economic status in Iran causes an increase in the number of emissions. The foreign policies are more effective in the Iranian economy and emissions than the domestic policies and parameters. The scenarios and the results show that the Iranian economy and energy systems have a significant potential for efficiency development plans. However, one thing is clear that Iranian emissions will be increased to 800 million tons by the end of the plan period (by 2021). This significant increase in the amount indicates the importance of optimization and efficiency development plans in Iran, which is predicted to control and fix this increment around 3-4%.


2013 ◽  
pp. 343-346
Author(s):  
Nurashida Saad ◽  
Ahmad Makmom Abdullah ◽  
Hafizan Juahir ◽  
Rosta Harun

2021 ◽  
Vol 8 (3) ◽  
pp. 118-124
Author(s):  
Krishna Anand ◽  
Sundara Raman

Spiraling continued increase in Emission of Green House Gases [GHG] play a significant role in impacting the environment and also human beings at large. Although recent studies have concentrated to an extent on developing schemes for reduction of Carbon dioxide emission and have identified methodologies in implementing the same, sufficient amount of studies have not been done on other greenhouse gases which also have adverse global impact as Carbon dioxide. Applications where methane and, nitrous oxide are emitted in abundance have continued to flourish. This work focuses on select methodologies in reducing all types of Greenhouse gases giving a larger amount of importance to ones which are more severe and the ones that cause depletion of ozone layer. Research findings have shown that majority of greenhouse gas emissions occur as a result of industry advances. Hence, as time is running out, there is an urgent need in identifying ways to mitigate these GHG emissions, thereby contributing to cleaner and healthier environment.


Author(s):  
Swithin S. Razu ◽  
Shun Takai

The aim of this paper is to study the impact of public policies and uncontrollable (exogenous) variables as well as optimal vehicle design on greenhouse gas (GHG) emissions in the US transportation sector. The overall model is divided into the government model and an enterprise model. To examine the effect of GHG emissions and exogenous variables, the optimization model includes public policy, exogenous variables, and a market mix focusing on the GHG effects of four different types of vehicles, 1) gasoline-based 2) gasoline-electric hybrid or alternative-fuel vehicles (AFVs), 3) battery-electric (BEVs) and 4) fuel-cell vehicles (FCVs). The public policies taken into consideration are infrastructure investments for hydrogen fueling stations and subsidies for purchasing AFVs. An exogenous variable taken into consideration are gasoline prices. For each selection of public policy and exogenous variables in the government model, the enterprise model finds the optimum vehicle design that maximizes profit and updates the market mix, from which the government model can estimate GHG emissions for that selection and can choose a public policy accordingly to produce a desired effect. This paper demonstrates the model using FCV design as an illustrative example.


2012 ◽  
Vol 524-527 ◽  
pp. 2538-2544 ◽  
Author(s):  
Worayut Saibuatrong ◽  
Thumrongrut Mungcharoen

Energy consumption and Greenhouse Gas (GHG) of major Alternative vehicle fuels (AVFs) in Thailand are estimated and compared with conventional fuels by means of full Life Cycle Assessment (LCA). The tool utilized here is the Well-to-Wheels (WtW) module of own model covering the entire lifecycle including: raw materials cultivation (or feedstock collection); fuel production; transportation and distribution; and application in automobile engines (ICE and hybrid engine), compared with conventional petroleum-based gasoline and diesel pathways. The model is based on Thailand’s national conditions with Tsinghua-CA3EM model. Part of this model structure has been adjusted to Thailand specific situations. Therefore, a majority of the parameters have been modified with local Thailand data. Results showed that the all alternative vehicle fuels can reduce energy consumption and GHG emissions compared to conventional fuels. Hybrid ICE engine to reduce energy consumption and GHG emissions when compared to the ICE engine. Biofuels-ICE engine, especially bioethanol from molasses, had the highest reduce energy consumption and GHG emissions. LPG- Hybrid ICE engine had the highest reduce energy consumption.


2011 ◽  
Vol 12 (1) ◽  
pp. 57-77
Author(s):  
James W Lewis ◽  
Morton A Barlaz ◽  
Akhtar Tayebali ◽  
S Ranji Ranjithan

Sign in / Sign up

Export Citation Format

Share Document