scholarly journals On the extent of fire-induced forest degradation in Mato Grosso, Brazilian Amazon, in 2000, 2005 and 2010

2016 ◽  
Vol 25 (2) ◽  
pp. 129 ◽  
Author(s):  
Jukka Miettinen ◽  
Yosio E. Shimabukuro ◽  
René Beuchle ◽  
Rosana C. Grecchi ◽  
Marcela Velasco Gomez ◽  
...  

In this paper we analyse the extent of fire-induced forest degradation in Mato Grosso State, Brazil. We utilise a sample based approach used in a previous pan-tropical deforestation survey to derive information on land cover and burned areas in the two major biomes of Mato Grosso: Amazon and Cerrado. Land cover and burned area are mapped for three years (2000–2005–2010) over 77 sample sites (10 000 ha each) distributed systematically throughout the state which covers 90.337 Mha. Our results indicate continuing forest degradation by fires in the state and potentially increasing fire susceptibility of the Amazon forests, regardless of the decrease in deforestation. 2010 witnessed the most extensive fire-induced forest degradation (~300 000 ha) in the forests of the Amazon biome among the study years, regardless of the fact that the fire season was less severe than in 2005. Deforestation in the Amazon biome in Mato Grosso dropped from 590 000 ha year–1 in the 2000–2005 period to 190 000 ha year–1 in the second half of the decade. The findings of this study advocate the inclusion of forest fire effects into carbon accounting initiatives.

2010 ◽  
Vol 10 (5) ◽  
pp. 2335-2351 ◽  
Author(s):  
D. Chang ◽  
Y. Song

Abstract. Biomass burning in tropical Asia emits large amounts of trace gases and particulate matter into the atmosphere, which has significant implications for atmospheric chemistry and climatic change. In this study, emissions from open biomass burning over tropical Asia were evaluated during seven fire years from 2000 to 2006 (1 March 2000–31 February 2007). The size of the burned areas was estimated from newly published 1-km L3JRC and 500-m MODIS burned area products (MCD45A1). Available fuel loads and emission factors were assigned to each vegetation type in a GlobCover characterisation map, and fuel moisture content was taken into account when calculating combustion factors. Over the whole period, both burned areas and fire emissions showed clear spatial and seasonal variations. The size of the L3JRC burned areas ranged from 36 031 km2 in fire year 2005 to 52 303 km2 in 2001, and the MCD45A1 burned areas ranged from 54 790 km2 in fire year 2001 to 148 967 km2 in 2004. Comparisons of L3JRC and MCD45A1 burned areas using ground-based measurements and other satellite data were made in several major burning regions, and the results suggest that MCD45A1 generally performed better than L3JRC, although with a certain degree of underestimation in forest areas. The average annual L3JRC-based emissions were 123 (102–152), 12 (9–15), 1.0 (0.7–1.3), 1.9 (1.4–2.6), 0.11 (0.09–0.12), 0.89 (0.63–1.21), 0.043 (0.036–0.053), 0.021 (0.021–0.023), 0.41 (0.34–0.52), 3.4 (2.6–4.3), and 3.6 (2.8–4.7) Tg yr−1 for CO2, CO, CH4, NMHCs, NOx, NH3, SO2, BC, OC, PM2.5, and PM10, respectively, whereas MCD45A1-based emissions were 122 (108–144), 9.3 (7.7–11.7), 0.63 (0.46–0.86), 1.1 (0.8–1.6), 0.11 (0.10–0.13), 0.54 (0.38–0.76), 0.043 (0.038–0.051), 0.033 (0.032–0.037), 0.39 (0.34–0.47), 3.0 (2.6–3.7), and 3.3 (2.8–4.0) Tg yr−1. Forest burning was identified as the major source of the fire emissions due to its high carbon density. Although agricultural burning was the second highest contributor, it is possible that some crop residue combustion was missed by satellite observations. This possibility is supported by comparisons with previously published data, and this result may be due to the small size of the field crop residue burning. Fire emissions were mainly concentrated in Indonesia, India, Myanmar, and Cambodia. Furthermore, the peak in the size of the burned area was generally found in the early fire season, whereas the maximum fire emissions often occurred in the late fire season.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Fernando Heberson Menezes ◽  
Guilherme Siniciato Terra Garbino ◽  
Thiago Borges Fernandes Semedo ◽  
Mendelson Lima ◽  
Anderson Feijó ◽  
...  

Abstract: We report range extensions for three species of Amazonian erethizontids, Coendou bicolor, C. ichillus, and C. nycthemera. We record C. ichillus for the first time in Brazil, from Rio Japurá, state of Amazonas. We record C. bicolor for the first time in the state of Amazonas, which represents a range extension of approximately 905 km. We also extend the occurrence of C. nycthemera 620 km to the south into Mato Grosso state. All records are based on museum specimens, highlighting the importance of scientific collections as biodiversity databases and emphasizing the lack of research on Amazonian porcupines.


2021 ◽  
Vol 21 (9) ◽  
pp. 2867-2880
Author(s):  
Patricia Tarín-Carrasco ◽  
Sofia Augusto ◽  
Laura Palacios-Peña ◽  
Nuno Ratola ◽  
Pedro Jiménez-Guerrero

Abstract. Uncontrolled wildfires have a substantial impact on the environment, the economy and local populations. According to the European Forest Fire Information System (EFFIS), between 2000 and 2013 wildfires burned up to 740 000 ha of land annually in the south of Europe, Portugal being the country with the highest percentage of burned area per square kilometre. However, there is still a lack of knowledge regarding the impacts of the wildfire-related pollutants on the mortality of the country's population. All wildfires occurring during the fire season (June–July–August–September) from 2001 and 2016 were identified, and those with a burned area above 1000 ha (large fires) were considered for the study. During the studied period (2001–2016), more than 2 million ha of forest (929 766 ha from June to September alone) were burned in mainland Portugal. Although large fires only represent less than 1 % of the number of total fires, in terms of burned area their contribution is 46 % (53 % from June to September). To assess the spatial impact of the wildfires, burned areas in each region of Portugal were correlated with PM10 concentrations measured at nearby background air quality monitoring stations. Associations between PM10 and all-cause (excluding injuries, poisoning and external causes) and cause-specific mortality (circulatory and respiratory) were studied for the affected populations using Poisson regression models. A significant positive correlation between burned area and PM10 was found in some regions of Portugal, as well as a significant association between PM10 concentrations and mortality, these being apparently related to large wildfires in some of the regions. The north, centre and inland of Portugal are the most affected areas. The high temperatures and long episodes of drought expected in the future will increase the probabilities of extreme events and therefore the occurrence of wildfires.


Phytotaxa ◽  
2019 ◽  
Vol 402 (1) ◽  
pp. 13 ◽  
Author(s):  
ANA KELLY KOCH ◽  
MATHIAS ERICH ENGELS ◽  
NILMÁRIA NATÁLIA VERAS REIS ◽  
CÉLIA REGINA ARAÚJO SOARES-LOPES

A new subspecies of Passiflora garckei (Passifloraceae) in Brazilian Amazon is described and illustrated. Furthermore, the lectotype of P. gardneri is herein designated and its geographical distribution is expanded to the state of Mato Grosso, Brazil.


2017 ◽  
Vol 26 (4) ◽  
pp. 287 ◽  
Author(s):  
Duncan M. Kimuyu ◽  
Ryan L. Sensenig ◽  
Robert M. Chira ◽  
John M. Githaiga ◽  
Truman P. Young

Both wild and prescribed fire in savanna ecosystems influence habitat use by herbivores by creating or maintaining spatial and temporal heterogeneity in forage quality and vegetation cover. Yet little is known about how spatial scales influence long-term persistence of fire effects. We examined changes over a 6-year period in herbivore preference for experimentally burned patches that varied in spatial extent and grain. Avoidance for the burns by elephants and preference for the burns by impala and Grant’s gazelle decreased significantly. For the rest of the species (zebra, eland, oryx, hartebeest, warthog and hare), there were no significant changes in preference for the burns. Changes in preference for the burned areas depended on the spatial extent and grain of the burn, with intermediate-size (9-ha) burns and large (8-ha) patchy burns being more preferred 6–7 years after fire. Grain, but not the spatial extent of the burned area, influenced changes in grass height. Fire resulted in a delayed reduced tree density irrespective of the spatial scale of the burn. Results of this study indicate that, depending on the scale of fire prescription, the impacts of fire on herbivores may last longer than previous studies suggest.


2021 ◽  
Author(s):  
Emmanuel Da Ponte ◽  
Fermin Alcasena ◽  
Tejas Bhagwat ◽  
Zhongyang Hu

<p>Despite  growing concerns regarding the Amazonian wildfires, the magnitude of the problem is poorly understood. In this study, we assessed the wildfire activity in the  protected natural sites (n= 428) of Bolivia, Brazil, Colombia, Ecuador, French Guyana, Guyana, Peru, Suriname, and Venezuela, encompassing an area of 1.4 million km<sup>2 </sup>of the Amazon basin. A 250 m resolution spectroradiometer sensor imaging (MODIS) was used to obtain land-use/land-cover (MODIS land use land cover product) changes and derive the wildfire activity data (ignition locations and burned areas (MODIS active fire products)) from 2001 to 2018. First, we characterized the mean fire return interval, wildfire occurrence, and empiric burn probability. Then, we implemented a transmission analysis to assess the burned area from incoming fires. We used transmission analysis to characterize the land use and anthropic activities associated to fire ignition locations across the different countries. On average, 867 km <sup>2</sup> of natural forests were burned in protected natural sites annually, and about 85 incoming fires per year from neighboring areas accounted for 10.5% (9,128 ha) of the burned area. The most affected countries were Brazil (53%), Bolivia (24%), and Venezuela (16%).Considerable amount of fire ignition points were detected in open savannas (29%) and grasslands (41%) , where the fire is periodically used to clear extensive grazing properties. The incoming fires from savannas were responsible for burning the largest forest areas within protected sites, affecting as much as 9,800 ha in a single fire event. In conclusion, we  discuss the potential implications of the main socioeconomic factors and environmental policies that could explain increasing trends of burned areas. Wildfire risk mitigation strategies include the fire ignition prevention in developed areas, fire use regulation in rural communities, increased fuels management efforts in the buffer areas surrounding natural sites, and the early detection system that may facilitate a rapid and effective fire control response. Our analysis and quantitative outcomes describing the fire activity represent a sound science-based approach for an well defined wildfire management within the protected areas of the Amazonian basin.</p>


2020 ◽  
Author(s):  
Itziar R. Urbieta ◽  
Gonzalo Arellano ◽  
José M. Moreno

<p>Fire activity has decreased in the last decades in Spain, as a whole and in most regions. However, little is known about the changes in the fire season peak, timing, and length. Here we studied the temporal variation in the fire season since the 1970’s for different Spanish regions. We analyzed weekly time series of annually burned area by fitting GAMs (Generalized Additive Models) models in R. Area burned was log transformed and smoothing P-splines were fit to study weekly seasonality. GAMS allowed us to model spring, summer, and autumn fire seasons. Changes in the sign of the smoothing parameter determined the timing (onset/end dates) of each fire season, while the maximum value of the parameter established the peak of the fire season. We applied trend analysis to study inter-annual variation in fire season timing, length, and amplitude. We found temporal and spatial differences in the fire season across regions. In the northern Atlantic regions, models performed better, and captured a bimodal fire season (spring-summer). Nonetheless, the bimodal fire-season structure is no longer distinguishable in recent years, since both are increasing in duration. In the Mediterranean regions, larger peaks of burned areas occur in shorter time spans. The amplitude and duration of the summer season is decreasing, probably due to the increase in fire suppression during the summer. The summer season is starting earlier, while, in general, no trend was found for the end of the season. Furthermore, spring fire peaks in Mediterranean regions are becoming more frequent, suggesting that more attention should be paid to these out-of-season conditions.</p>


2020 ◽  
Vol 12 (23) ◽  
pp. 3864
Author(s):  
Ana Carolina M. Pessôa ◽  
Liana O. Anderson ◽  
Nathália S. Carvalho ◽  
Wesley A. Campanharo ◽  
Celso H. L. Silva Junior ◽  
...  

Carbon (C) emissions from forest fires in the Amazon during extreme droughts may correspond to more than half of the global emissions resulting from land cover changes. Despite their relevant contribution, forest fire-related C emissions are not directly accounted for within national-level inventories or carbon budgets. A fundamental condition for quantifying these emissions is to have a reliable estimation of the extent and location of land cover types affected by fires. Here, we evaluated the relative performance of four burned area products (TREES, MCD64A1 c6, GABAM, and Fire_cci v5.0), contrasting their estimates of total burned area, and their influence on the fire-related C emissions in the Amazon biome for the year 2015. In addition, we distinguished the burned areas occurring in forests from non-forest areas. The four products presented great divergence in the total burned area and, consequently, total related C emissions. Globally, the TREES product detected the largest amount of burned area (35,559 km2), and consequently it presented the largest estimate of committed carbon emission (45 Tg), followed by MCD64A1, with only 3% less burned area detected, GABAM (28,193 km2) and Fire_cci (14,924 km2). The use of Fire_cci may result in an underestimation of 29.54 ± 3.36 Tg of C emissions in relation to the TREES product. The same pattern was found for non-forest areas. Considering only forest burned areas, GABAM was the product that detected the largest area (8994 km2), followed by TREES (7985 km2), MCD64A1 (7181 km2) and Fire_cci (1745 km2). Regionally, Fire_cci detected 98% less burned area in Acre state in southwest Amazonia than TREES, and approximately 160 times less burned area in forests than GABAM. Thus, we show that global products used interchangeably on a regional scale could significantly underestimate the impacts caused by fire and, consequently, their related carbon emissions.


2019 ◽  
Vol 11 (5) ◽  
pp. 489 ◽  
Author(s):  
Tengfei Long ◽  
Zhaoming Zhang ◽  
Guojin He ◽  
Weili Jiao ◽  
Chao Tang ◽  
...  

Heretofore, global Burned Area (BA) products have only been available at coarse spatial resolution, since most of the current global BA products are produced with the help of active fire detection or dense time-series change analysis, which requires very high temporal resolution. In this study, however, we focus on an automated global burned area mapping approach based on Landsat images. By utilizing the huge catalog of satellite imagery, as well as the high-performance computing capacity of Google Earth Engine, we propose an automated pipeline for generating 30-m resolution global-scale annual burned area maps from time-series of Landsat images, and a novel 30-m resolution Global annual Burned Area Map of 2015 (GABAM 2015) was released. All the available Landsat-8 images during 2014–2015 and various spectral indices were utilized to calculate the burned probability of each pixel using random decision forests, which were globally trained with stratified (considering both fire frequency and type of land cover) samples, and a seed-growing approach was conducted to shape the final burned areas after several carefully-designed logical filters (NDVI filter, Normalized Burned Ratio (NBR) filter, and temporal filter). GABAM 2015 consists of spatial extent of fires that occurred during 2015 and not of fires that occurred in previous years. Cross-comparison with the recent Fire_cci Version 5.0 BA product found a similar spatial distribution and a strong correlation ( R 2 = 0.74) between the burned areas from the two products, although differences were found in specific land cover categories (particularly in agriculture land). Preliminary global validation showed the commission and omission errors of GABAM 2015 to be 13.17% and 30.13%, respectively.


Sign in / Sign up

Export Citation Format

Share Document