Modelling spatiotemporal variability in fires in semiarid savannas: a satellite-based assessment around Africa’s largest protected area

2016 ◽  
Vol 25 (7) ◽  
pp. 730 ◽  
Author(s):  
Niti B. Mishra ◽  
Kumar P. Mainali ◽  
Kelley A. Crews

The relative importance of various drivers of fire regimes in savanna ecosystems can be location-specific. We utilised satellite-derived time-series burned area (2001–13) to examine how spatiotemporal variations in burned area and fire frequency were determined by rainfall, vegetation morphology and land use in semiarid savanna. Mean precipitation of the rainy season (Nov–Apr) had a strong and positive relationship with burned area in the following dry season (variance explained 63%), with the relationship being strongest inside protected areas (variance explained 73%). Burned area and fire frequency were higher in vegetation types with higher herbaceous cover, indicating a causal link between herbaceous load and fire. Among land use, fire frequency was highest in protected areas and lowest in farms and ranches. Spatial models (generalised linear models with Poisson and negative binomial distribution) accounting for spatial autocorrelation showed that land-use classes and vegetation types together explained approximately half of the deviance in null model (48%). Existence of fences and boreholes resulted in finer-scale spatial differences in fire frequency. There was minimal dependence of vegetation types on land-use classes in determining fire frequency (interaction between the two predictors was minimal). These results have significant implications for understanding drivers of fire activity in savanna ecosystems.

2019 ◽  
Vol 12 (1) ◽  
pp. 5 ◽  
Author(s):  
Yenni Vetrita ◽  
Mark A. Cochrane

Indonesia’s converted peatland areas have a well-established fire problem, but limited studies have examined the frequency with which they are burning. Here, we quantify fire frequency in Indonesia’s two largest peatland regions, Sumatra and Kalimantan, during 2001–2018. We report, annual areas burned, total peatland area affected by fires, amount of recurrent burning and associations with land-use and land-cover (LULC) change. We based these analyses on Moderate Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua combined burned area and three Landsat-derived LULC maps (1990, 2007, and 2015) and explored relationships between burning and land-cover types. Cumulative areas burned amounted nearly half of the surface areas of Sumatra and Kalimantan but were concentrated in only ~25% of the land areas. Although peatlands cover only 13% of Sumatra and Kalimantan, annual percentage of area burning in these areas was almost five times greater than in non-peatlands (2.8% vs. 0.6%) from 2001 to 2018. Recurrent burning was more prominent in Kalimantan than Sumatra. Average fire-return intervals (FRI) in peatlands of both regions were short, 28 and 45 years for Kalimantan and Sumatra, respectively. On average, forest FRI were less than 50 years. In non-forest areas, Kalimantan had shorter average FRI than Sumatra (13 years vs. 40 years), with ferns/low shrub areas burning most frequently. Our findings highlight the significant influence of LULC change in altering fire regimes. If prevalent rates of burning in Indonesia’s peatlands are not greatly reduced, peat swamp forest will disappear from Sumatra and Kalimantan in the coming decades.


Bothalia ◽  
2016 ◽  
Vol 46 (2) ◽  
Author(s):  
Nokuphila L.S. Buthelezi ◽  
Onisimo Mutanga ◽  
Mathieu Rouget ◽  
Mbulisi Sibanda

Background: The role of fire in maintaining grassland diversity has been widely recognised; however, its effect in KwaZulu-Natal grasslands is still rudimentary. In that regard, understanding fire regimes of different vegetation types in KwaZulu-Natal is a critical step towards the development of effective management strategies that are specific to each vegetation type. Objective: To assess the effect of different vegetation types on fire regimes in KwaZulu-Natal using moderate resolution imaging spectroradiometer (MODIS) burnt fire products. Method: Ten years of fire data for four different vegetation types (Ngongoni Veld, KwaZuluNatal Sandstone Sourveld, Eastern Valley Bushveld and KwaZulu-Natal Coastal Belt) were extracted from the MODIS products and used as a basis to establish three parameters: annual burnt areas, fire season and fire frequency. The total burnt area within each vegetation type over the 10-year period was quantified. Results: The KZN Sandstone Sourveld had a high-burnt area of 80% in 2009 with KwaZuluNatal Coastal Belt having the least burnt area of less than 5%. Ngongoni Veld and the KwaZuluNatal Sandstone Sourveld had the highest fire frequency, while the coastal region had low fire frequencies. Results showed high fire prevalence during the late period of the dry season (which extends from June to August) across all the vegetation types. Conclusion: This study underscores the potential of remotely sensed data (MODIS burned area products) in providing a comprehensive view of fire patterns in different vegetation types


2019 ◽  
Vol 16 (19) ◽  
pp. 3883-3910 ◽  
Author(s):  
Lina Teckentrup ◽  
Sandy P. Harrison ◽  
Stijn Hantson ◽  
Angelika Heil ◽  
Joe R. Melton ◽  
...  

Abstract. Understanding how fire regimes change over time is of major importance for understanding their future impact on the Earth system, including society. Large differences in simulated burned area between fire models show that there is substantial uncertainty associated with modelling global change impacts on fire regimes. We draw here on sensitivity simulations made by seven global dynamic vegetation models participating in the Fire Model Intercomparison Project (FireMIP) to understand how differences in models translate into differences in fire regime projections. The sensitivity experiments isolate the impact of the individual drivers on simulated burned area, which are prescribed in the simulations. Specifically these drivers are atmospheric CO2 concentration, population density, land-use change, lightning and climate. The seven models capture spatial patterns in burned area. However, they show considerable differences in the burned area trends since 1921. We analyse the trajectories of differences between the sensitivity and reference simulation to improve our understanding of what drives the global trends in burned area. Where it is possible, we link the inter-model differences to model assumptions. Overall, these analyses reveal that the largest uncertainties in simulating global historical burned area are related to the representation of anthropogenic ignitions and suppression and effects of land use on vegetation and fire. In line with previous studies this highlights the need to improve our understanding and model representation of the relationship between human activities and fire to improve our abilities to model fire within Earth system model applications. Only two models show a strong response to atmospheric CO2 concentration. The effects of changes in atmospheric CO2 concentration on fire are complex and quantitative information of how fuel loads and how flammability changes due to this factor is missing. The response to lightning on global scale is low. The response of burned area to climate is spatially heterogeneous and has a strong inter-annual variation. Climate is therefore likely more important than the other factors for short-term variations and extremes in burned area. This study provides a basis to understand the uncertainties in global fire modelling. Both improvements in process understanding and observational constraints reduce uncertainties in modelling burned area trends.


2020 ◽  
Vol 13 ◽  
pp. 117862212096919
Author(s):  
Miguel L Villarreal ◽  
José M Iniguez ◽  
Aaron D Flesch ◽  
Jamie S Sanderlin ◽  
Citlali Cortés Montaño ◽  
...  

The relationship between people and wildfire has always been paradoxical: fire is an essential ecological process and management tool, but can also be detrimental to life and property. Consequently, fire regimes have been modified throughout history through both intentional burning to promote benefits and active suppression to reduce risks. Reintroducing fire and its benefits back into the Sky Island mountains of the United States-Mexico borderlands has the potential to reduce adverse effects of altered fire regimes and build resilient ecosystems and human communities. To help guide regional fire restoration, we describe the frequency and severity of recent fires over a 32-year period (1985-2017) across a vast binational region in the United States-Mexico borderlands and assess variation in fire frequency and severity across climate gradients and in relation to vegetation and land tenure classes. We synthesize relevant literature on historical fire regimes within 9 major vegetation types and assess how observed contemporary fire characteristics vary from expectations based on historical patterns. Less than 28% of the study area burned during the observation period, excluding vegetation types in warmer climates that are not adapted to fire (eg, Desertscrub and Thornscrub). Average severity of recent fires was low despite some extreme outliers in cooler, wetter environments. Midway along regional temperature and precipitation gradients, approximately 64% of Pine-Oak Forests burned at least once, with fire frequencies that mainly corresponded to historical expectations on private lands in Mexico but less so on communal lands, suggesting the influence of land management. Fire frequency was higher than historical expectations in extremely cool and wet environments that support forest types such as Spruce-Fir, indicating threats to these systems possibly attributable to drought and other factors. In contrast, fires were absent or infrequent across large areas of Woodlands (~73% unburned) and Grasslands (~88% unburned) due possibly to overgrazing, which reduces abundance and continuity of fine fuels needed to carry fire. Our findings provide a new depiction of fire regimes in the Sky Islands that can help inform fire management, restoration, and regional conservation planning, fostered by local and traditional knowledge and collaboration among landowners and managers.


2012 ◽  
Vol 77 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Damien Rius ◽  
Boris Vanniére ◽  
Didier Galop

Located on a mountain pass in the west-central Pyrenees, the Col d'Ech peat bog provides a Holocene fire and vegetation record based upon nine 14C (AMS) dates. We aim to compare climate-driven versus human-driven fire regimes in terms of frequency, fire episodes distribution, and impact on vegetation. Our results show the mid-Holocene (8500–5500 cal yr BP) to be characterized by high fire frequency linked with drier and warmer conditions. However, fire occurrences appear to have been rather stochastic as underlined by a scattered chronological distribution. Wetter and colder conditions at the mid-to-late Holocene transition (4000–3000 cal yr BP) led to a decrease in fire frequency, probably driven by both climate and a subsequent reduction in human land use. On the contrary, from 3000 cal yr BP, fire frequency seems to be driven by agro-pastoral activities with a very regular distribution of events. During this period fire was used as a prominent agent of landscape management.


2020 ◽  
Author(s):  
Gitta Lasslop ◽  
Stijn Hantson ◽  
Victor Brovkin ◽  
Fang Li ◽  
David Lawrence ◽  
...  

<p>Fires are an important component in Earth system models (ESMs), they impact vegetation carbon storage, vegetation distribution, atmospheric composition and cloud formation. The representation of fires in ESMs contributing to CMIP phase 5 was still very simplified. Several Earth system models updated their representation of fires in the meantime. Using the latest simulations of CMIP6 we investigate how fire regimes change in the future for different scenarios and how land use, climate and atmospheric CO<sub>2</sub> concentration contribute to the fire regimes changes. We quantify changes in fire danger, burned area and carbon emissions on an annual and seasonal basis. Factorial model simulations allow to quantify the influence of land use, climate and atmospheric CO<sub>2</sub> on fire regimes.</p><p>We complement the information on fire regime change supplied by ESMs that include a fire module with a statistical modelling approach for burned area. This will use information from simulated changes in climate, vegetation and socioeconomic changes (population density and land use) provided for a set of different future scenarios. This allows the integration of information provided by global satellite products on burned area with the process-based simulations of climate and vegetation changes and information from socioeconomic scenarios.</p><p> </p>


2021 ◽  
Author(s):  
Emmanuel Da Ponte ◽  
Fermin Alcasena ◽  
Tejas Bhagwat ◽  
Zhongyang Hu

<p>Despite  growing concerns regarding the Amazonian wildfires, the magnitude of the problem is poorly understood. In this study, we assessed the wildfire activity in the  protected natural sites (n= 428) of Bolivia, Brazil, Colombia, Ecuador, French Guyana, Guyana, Peru, Suriname, and Venezuela, encompassing an area of 1.4 million km<sup>2 </sup>of the Amazon basin. A 250 m resolution spectroradiometer sensor imaging (MODIS) was used to obtain land-use/land-cover (MODIS land use land cover product) changes and derive the wildfire activity data (ignition locations and burned areas (MODIS active fire products)) from 2001 to 2018. First, we characterized the mean fire return interval, wildfire occurrence, and empiric burn probability. Then, we implemented a transmission analysis to assess the burned area from incoming fires. We used transmission analysis to characterize the land use and anthropic activities associated to fire ignition locations across the different countries. On average, 867 km <sup>2</sup> of natural forests were burned in protected natural sites annually, and about 85 incoming fires per year from neighboring areas accounted for 10.5% (9,128 ha) of the burned area. The most affected countries were Brazil (53%), Bolivia (24%), and Venezuela (16%).Considerable amount of fire ignition points were detected in open savannas (29%) and grasslands (41%) , where the fire is periodically used to clear extensive grazing properties. The incoming fires from savannas were responsible for burning the largest forest areas within protected sites, affecting as much as 9,800 ha in a single fire event. In conclusion, we  discuss the potential implications of the main socioeconomic factors and environmental policies that could explain increasing trends of burned areas. Wildfire risk mitigation strategies include the fire ignition prevention in developed areas, fire use regulation in rural communities, increased fuels management efforts in the buffer areas surrounding natural sites, and the early detection system that may facilitate a rapid and effective fire control response. Our analysis and quantitative outcomes describing the fire activity represent a sound science-based approach for an well defined wildfire management within the protected areas of the Amazonian basin.</p>


2019 ◽  
Author(s):  
Lina Teckentrup ◽  
Sandy P. Harrison ◽  
Stijn Hantson ◽  
Angelika Heil ◽  
Joe R. Melton ◽  
...  

Abstract. Understanding how fire regimes change over time is of major importance for understanding their future impact on the Earth system, including society. Large differences in simulated burned area between fire models show that there is substantial uncertainty associated with modelling global change impacts on fire regimes. We draw here on sensitivity simulations made by seven global dynamic vegetation models participating in the Fire Model Intercomparison Project (FireMIP) to understand how differences in models translate into differences in fire regime projections. The sensitivity experiments isolate the impact of the individual drivers of fire, which are prescribed in the simulations. Specifically these drivers are atmospheric CO2, population density, land-use change, lightning and climate. The seven models capture spatial patterns in burned area. However, they show considerable differences in the burned area trends since 1900. We analyse the trajectories of differences between the sensitivity and reference simulation to improve our understanding of what drives the global trend in burned area. Where it is possible, we link the inter-model differences to model assumptions. Overall, these analyses reveal that the strongest differences leading to diverging trajectories are related to the way anthropogenic ignitions and suppression, as well as the effects of land-use on vegetation and fire, are incorporated in individual models. This points to a need to improve our understanding and model representation of the relationship between human activities and fire to improve our abilities to model fire for global change applications. Only two models show a strong response to CO2 and the response to lightning on global scale is low for all models. The sensitivity to climate shows a spatially heterogeneous response and globally only two models show a significant trend. It was not possible to attribute the climate-induced changes in burned area to model assumptions or specific climatic parameters. However, the strong influence of climate on the inter-annual variability in burned area, shown by all the models, shows that we need to pay attention to the simulation of fire weather but also meteorological influences on biomass accumulation and fuel properties in order to better capture extremes in fire behavior.


2001 ◽  
Vol 10 (4) ◽  
pp. 329 ◽  
Author(s):  
Penelope Morgan ◽  
Colin C. Hardy ◽  
Thomas W. Swetnam ◽  
Matthew G. Rollins ◽  
Donald G. Long

This paper was presented at the conference ‘Integrating spatial technologies and ecological principles for a new age in fire management’, Boise, Idaho, USA, June 1999 Maps of fire frequency, severity, size, and pattern are useful for strategically planning fire and natural resource management, assessing risk and ecological conditions, illustrating change in disturbance regimes through time, identifying knowledge gaps, and learning how climate, topography, vegetation, and land use influence fire regimes. We review and compare alternative data sources and approaches for mapping fire regimes at national, regional, and local spatial scales. Fire regimes, defined here as the nature of fires occurring over an extended period of time, are closely related to local site productivity and topography, but climate variability entrains fire regimes at regional to national scales. In response to fire exclusion policies, land use, and invasion of exotic plants over the last century, fire regimes have changed greatly, especially in dry forests, woodlands, and grasslands. Comparing among and within geographic regions, and across time, is a powerful way to understand the factors determining and constraining fire patterns. Assembling spatial databases of fire information using consistent protocols and standards will aid comparison between studies, and speed and strengthen analyses. Combining multiple types of data will increase the power and reliability of interpretations. Testing hypotheses about relationships between fire, climate, vegetation, land use, and topography will help to identify what determines fire regimes at multiple scales.


2021 ◽  
Author(s):  
Jed Meunier

Abstract BackgroundThe Lake States experienced unprecedented land use changes during Euro-American settlement (settlement) including large, destructive fires. Forest changes were radical in this region and largely attributed to anomalous settlement era fires in slash (cumulation of tops and branches) following cutover logging. In this study I place settlement era fires in a historical context by examining fire scar data in comparison to historical accounts and investigate fire-vegetation-climate relationships within a 400-year context.ResultsSettlement era fires (1851–1947) were less frequent than historical fires (1548–1850) with little evidence that slash impacted fire frequency or occurrence at site or ecoregion scales. Only one out of 25 sites had more frequent settlement era fires and that site was a pine forest that had never been harvested. Settlement era fires were similar across disparate ecoregions and forest types including in areas with very different land use history. Settlement fires tended to burn during significantly dry periods, the same conditions driving large fires for the past 400 years. The burned area in the October 8, 1871 Peshtigo Fire was comprised of mesic forests where fuels were always abundant and high-severity fires would be expected given the conditions in 1871. Furthermore, slash would not have been a major contributor to fire behavior or effects in the Peshtigo Fire.ConclusionsHistorical records, like written accounts of fires and settlement era survey records, provide a reference point for landscape changes but lack temporal depth to understand forest dynamics or provide a mechanistic understanding of changes. While settlement land use changes of Lake States forests were pervasive, fires were not the ultimate degrading factor, but rather likely one of the few natural processes still at work.


Sign in / Sign up

Export Citation Format

Share Document