scholarly journals A spatial and temporal assessment of fire regimes on different vegetation types using MODIS burnt area products

Bothalia ◽  
2016 ◽  
Vol 46 (2) ◽  
Author(s):  
Nokuphila L.S. Buthelezi ◽  
Onisimo Mutanga ◽  
Mathieu Rouget ◽  
Mbulisi Sibanda

Background: The role of fire in maintaining grassland diversity has been widely recognised; however, its effect in KwaZulu-Natal grasslands is still rudimentary. In that regard, understanding fire regimes of different vegetation types in KwaZulu-Natal is a critical step towards the development of effective management strategies that are specific to each vegetation type. Objective: To assess the effect of different vegetation types on fire regimes in KwaZulu-Natal using moderate resolution imaging spectroradiometer (MODIS) burnt fire products. Method: Ten years of fire data for four different vegetation types (Ngongoni Veld, KwaZuluNatal Sandstone Sourveld, Eastern Valley Bushveld and KwaZulu-Natal Coastal Belt) were extracted from the MODIS products and used as a basis to establish three parameters: annual burnt areas, fire season and fire frequency. The total burnt area within each vegetation type over the 10-year period was quantified. Results: The KZN Sandstone Sourveld had a high-burnt area of 80% in 2009 with KwaZuluNatal Coastal Belt having the least burnt area of less than 5%. Ngongoni Veld and the KwaZuluNatal Sandstone Sourveld had the highest fire frequency, while the coastal region had low fire frequencies. Results showed high fire prevalence during the late period of the dry season (which extends from June to August) across all the vegetation types. Conclusion: This study underscores the potential of remotely sensed data (MODIS burned area products) in providing a comprehensive view of fire patterns in different vegetation types

2016 ◽  
Vol 25 (7) ◽  
pp. 730 ◽  
Author(s):  
Niti B. Mishra ◽  
Kumar P. Mainali ◽  
Kelley A. Crews

The relative importance of various drivers of fire regimes in savanna ecosystems can be location-specific. We utilised satellite-derived time-series burned area (2001–13) to examine how spatiotemporal variations in burned area and fire frequency were determined by rainfall, vegetation morphology and land use in semiarid savanna. Mean precipitation of the rainy season (Nov–Apr) had a strong and positive relationship with burned area in the following dry season (variance explained 63%), with the relationship being strongest inside protected areas (variance explained 73%). Burned area and fire frequency were higher in vegetation types with higher herbaceous cover, indicating a causal link between herbaceous load and fire. Among land use, fire frequency was highest in protected areas and lowest in farms and ranches. Spatial models (generalised linear models with Poisson and negative binomial distribution) accounting for spatial autocorrelation showed that land-use classes and vegetation types together explained approximately half of the deviance in null model (48%). Existence of fences and boreholes resulted in finer-scale spatial differences in fire frequency. There was minimal dependence of vegetation types on land-use classes in determining fire frequency (interaction between the two predictors was minimal). These results have significant implications for understanding drivers of fire activity in savanna ecosystems.


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 32
Author(s):  
Judy A. Foulkes ◽  
Lynda D. Prior ◽  
Steven W. J. Leonard ◽  
David M. J. S. Bowman

Australian montane sclerophyll shrubland vegetation is widely considered to be resilient to infrequent severe fire, but this may not be the case in Tasmania. Here, we report on the vegetative and seedling regeneration response of a Tasmanian non-coniferous woody montane shrubland following a severe fire, which burned much of the Great Pine Tier in the Central Plateau Conservation Area during the 2018–2019 fire season when a historically anomalously large area was burned in central Tasmania. Our field survey of a representative area burned by severe crown fire revealed that more than 99% of the shrubland plants were top-killed, with only 5% of the burnt plants resprouting one year following the fire. Such a low resprouting rate means the resilience of the shrubland depends on seedling regeneration from aerial and soil seedbanks or colonization from plants outside the burned area. Woody species’ seedling densities were variable but generally low (25 m−2). The low number of resprouters, and reliance on seedlings for recovery, suggest the shrubland may not be as resilient to fire as mainland Australian montane shrubland, particularly given a warming climate and likely increase in fire frequency.


2011 ◽  
Vol 20 (4) ◽  
pp. 540 ◽  
Author(s):  
T. G. O'Connor ◽  
C. M. Mulqueeny ◽  
P. S. Goodman

Fire pattern is predicted to vary across an African savanna in accordance with spatial variation in rainfall through its effects on fuel production, vegetation type (on account of differences in fuel load and in flammability), and distribution of herbivores (because of their effects on fuel load). These predictions were examined for the 23 651-ha Mkuzi Game Reserve, KwaZulu-Natal, based on a 37-year data set. Fire return period varied from no occurrence to a fire every 1.76 years. Approximately 75% of the reserve experienced a fire approximately every 5 years, 25% every 4.1–2.2 years and less than 1% every 2 years on average. Fire return period decreased in relation to an increase in mean annual rainfall. For terrestrial vegetation types, median fire return periods decreased with increasing herbaceous biomass, from forest that did not burn to grasslands that burnt every 2.64 years. Fire was absent from some permanent wetlands but seasonal wetlands burnt every 5.29 years. Grazer biomass above 0.5 animal units ha–1 had a limiting influence on the maximum fire frequency of fire-prone vegetation types. The primary determinant of long-term spatial fire patterns is thus fuel load as determined by mean rainfall, vegetation type, and the effects of grazing herbivores.


FLORESTA ◽  
2002 ◽  
Vol 32 (2) ◽  
Author(s):  
Ronaldo Viana Soares ◽  
Juliana Ferreira Santos

O conhecimento do perfil dos incêndios florestais é muito importante para o planejamento do controle dos mesmos. O objetivo deste trabalho foi estabelecer o perfil dos incêndios florestais no país através de dados coletados, em áreas protegidas, no período de 1994 a 1997, através de formulários preenchidos por empresas e instituições florestais. Foram registrados e informados 1.957 incêndios e apesar deste número não representar a totalidade dos incêndios ocorridos no período estudado, constituiu-se numa base confiável para se conhecer as principais características dos incêndios. Os resultados mostraram que a área média atingida por incêndio no período analisado foi de aproximadamente 135 ha, sendo Minas Gerais o estado líder, tanto em número de incêndios informados (62,7% do total) como em área queimada (25,2%). O grupo Incendiários foi a principal causa dos incêndios, com 56,6% das ocorrências, vindo a seguir as Queimas para limpeza com 22,1%. Com relação à área queimada o grupo Queimas para limpeza , com 74,1% da superfície atingida, foi a principal causa, ficando o grupo Incendiários em segundo lugar com 19,8%. A principal estação de incêndios no país se estende de julho a novembro, quando ocorreram 79,2% dos incêndios, correspondendo a 98,6% da área atingida. O maior número de incêndios (39,7% das ocorrências) foi registrado em Outro tipo de vegetação, que inclui cerrado, capoeira e campo. Com relação à área atingida, entretanto, 92,5% foi registrada em Florestas Nativas. Quanto à distribuição dos incêndios através das classes de tamanho, 23,9% foi enquadrado na classe I ( 0,1 ha). É importante ressaltar que quanto maior a eficiência no combate aos incêndios, maior é a concentração dos mesmos na classe I. Apesar de corresponder a apenas 2,4% das ocorrências, os incêndios da classe V ( 200,0 ha) foram responsáveis por 94,5% da área queimada. FOREST FIRE STATISTICS IN BRAZIL FROM 1994 TO 1997 Abstract Forest fire statistics knowledge is an important tool for fire control planning. The objective of this research was to collect information on forest fire occurrence in Brazilian protected areas in the period of 1994 to 1997. The analyzed variables were the number of fires and burned areas per state of the federation, monthly distribution, probable causes, affected vegetation, size class distribution, and average burned area per fire. Results showed that the average burned area per fire was approximately 135 ha and Minas Gerais ranked first, both in number of registered fires (62.7%) and burned surface (25.2%). Incendiary, with 56.6% of the occurrences was the leading cause, followed by debris burning with 22.1%. However, as for the affected area, Debris burning was the leading cause (74.1%), followed by Incendiary (19.8%). The fire season extends from July to November, when 79.2% of the fires occurred, corresponding to 98.6% of the burned surface. Miscellaneous, that includes savanna, secondary growth forest, and grassland were the most affected vegetation type (39.7% of the occurrences). In relation to the burned surface, Native Forest (92.5%) ranked first. The distribution of the registered fires through the size classes presented 23.9% of the occurrences in Class I ( 0.1 ha), whereas 94.5% of the burned area were result of Class V ( 200 ha) fires. Size Class II (0.1 to 4.0 ha), with 49.1% of the occurrences, ranked first in number of registered fires during the analyzed period.


2008 ◽  
Vol 17 (5) ◽  
pp. 602 ◽  
Author(s):  
Alexandra D. Syphard ◽  
Volker C. Radeloff ◽  
Nicholas S. Keuler ◽  
Robert S. Taylor ◽  
Todd J. Hawbaker ◽  
...  

Humans influence the frequency and spatial pattern of fire and contribute to altered fire regimes, but fuel loading is often the only factor considered when planning management activities to reduce fire hazard. Understanding both the human and biophysical landscape characteristics that explain how fire patterns vary should help to identify where fire is most likely to threaten values at risk. We used human and biophysical explanatory variables to model and map the spatial patterns of both fire ignitions and fire frequency in the Santa Monica Mountains, a human-dominated southern California landscape. Most fires in the study area are caused by humans, and our results showed that fire ignition patterns were strongly influenced by human variables. In particular, ignitions were most likely to occur close to roads, trails, and housing development but were also related to vegetation type. In contrast, biophysical variables related to climate and terrain (January temperature, transformed aspect, elevation, and slope) explained most of the variation in fire frequency. Although most ignitions occur close to human infrastructure, fires were more likely to spread when located farther from urban development. How far fires spread was ultimately related to biophysical variables, and the largest fires in southern California occurred as a function of wind speed, topography, and vegetation type. Overlaying predictive maps of fire ignitions and fire frequency may be useful for identifying high-risk areas that can be targeted for fire management actions.


2019 ◽  
pp. 1034-1048
Author(s):  
John Isaac Molefe

Despite its role and relevance in environmental management at all scales the use of fire has been contentious. The absence of information on fire parameters compounds the situation. This study derives fire parameter information for Botswana by analyzing MODIS fire data for (2001-2012), using conditional statements, and cluster mapping in ArcGIS. The study also related the fire information to other variables to examine how they interact with fire. The results of the study indicates that over the 12 year period the burned area has exhibited an upward trend. It has also shown that most of the fire in the country occur over the late dry season when the fires are potentially destructive. A south-north transect of fire frequency is observed, accompanied by an inverse relationship between frequency and intensity. Of all the factors, rainfall (0.638) and biomass(NDVI) (0.355) were the most significant contributors to the fire activity. The study demonstrated the utility of the MODIS fire data in characterizing the fire regime of the country and thus contribute to the policy process.


2020 ◽  
Vol 13 ◽  
pp. 117862212096919
Author(s):  
Miguel L Villarreal ◽  
José M Iniguez ◽  
Aaron D Flesch ◽  
Jamie S Sanderlin ◽  
Citlali Cortés Montaño ◽  
...  

The relationship between people and wildfire has always been paradoxical: fire is an essential ecological process and management tool, but can also be detrimental to life and property. Consequently, fire regimes have been modified throughout history through both intentional burning to promote benefits and active suppression to reduce risks. Reintroducing fire and its benefits back into the Sky Island mountains of the United States-Mexico borderlands has the potential to reduce adverse effects of altered fire regimes and build resilient ecosystems and human communities. To help guide regional fire restoration, we describe the frequency and severity of recent fires over a 32-year period (1985-2017) across a vast binational region in the United States-Mexico borderlands and assess variation in fire frequency and severity across climate gradients and in relation to vegetation and land tenure classes. We synthesize relevant literature on historical fire regimes within 9 major vegetation types and assess how observed contemporary fire characteristics vary from expectations based on historical patterns. Less than 28% of the study area burned during the observation period, excluding vegetation types in warmer climates that are not adapted to fire (eg, Desertscrub and Thornscrub). Average severity of recent fires was low despite some extreme outliers in cooler, wetter environments. Midway along regional temperature and precipitation gradients, approximately 64% of Pine-Oak Forests burned at least once, with fire frequencies that mainly corresponded to historical expectations on private lands in Mexico but less so on communal lands, suggesting the influence of land management. Fire frequency was higher than historical expectations in extremely cool and wet environments that support forest types such as Spruce-Fir, indicating threats to these systems possibly attributable to drought and other factors. In contrast, fires were absent or infrequent across large areas of Woodlands (~73% unburned) and Grasslands (~88% unburned) due possibly to overgrazing, which reduces abundance and continuity of fine fuels needed to carry fire. Our findings provide a new depiction of fire regimes in the Sky Islands that can help inform fire management, restoration, and regional conservation planning, fostered by local and traditional knowledge and collaboration among landowners and managers.


2014 ◽  
Vol 36 (4) ◽  
pp. 371 ◽  
Author(s):  
Peter J. Whitehead ◽  
Jeremy Russell-Smith ◽  
Cameron Yates

Anthropogenic fires in Australia’s fire-prone savannas produce up to 3% of the nation’s accountable greenhouse gas (GHG) emissions. Incentives to improve fire management have been created by a nationally accredited savanna burning emissions abatement methodology applying to 483 000 km2 of relatively high-rainfall (>1000 mm p.a.) regions. Drawing on 15 years of fire mapping, this paper assesses appropriate biophysical boundaries for a savanna burning methodology extended to cover lower-rainfall regions. We examine a large random sample of points with at least 300 mm of annual rainfall, to show that: (a) relative fire frequencies (percentage of years with fire) decline from 33.3% in higher-rainfall regions (>1000 mm) to straddling ~10% in the range 300–700 mm; (b) there are no marked discontinuities in fire frequency or fire seasonality down the rainfall gradient; (c) at all annual rainfalls, fire frequency is higher when rainfall is more strongly seasonal (very low rainfall in the driest quarter); (d) below 500 mm fire regimes are particularly variable and a large proportion of sampled sites had no fire over the study period; (e) fire is more likely to occur later in the fire season (generating relatively higher emissions) in the 600–700-mm annual rainfall band than in other parts of the rainfall gradient; (f) woodland savannas are most common above and predominantly grassland systems are more common below ~600-mm annual rainfall. We propose that development of a complementary lower-rainfall savanna burning methodology apply to regions between 600 and 1000-mm annual rainfall and ≤15 mm of rainfall in the driest quarter, adding an area more than 1.5 times the existing methodology’s coverage. Given greater variability in biophysical influences on fire regimes and observed levels of fire frequency within this lower-rainfall domain, we suggest that criteria for determining baseline (pre-project) periods require estimates of mean annual emissions equivalent in precision to the project on which the higher-rainfall methodology was based.


2015 ◽  
Vol 24 (5) ◽  
pp. 712 ◽  
Author(s):  
Michael J. Lawes ◽  
Brett P. Murphy ◽  
Alaric Fisher ◽  
John C. Z. Woinarski ◽  
Andrew C. Edwards ◽  
...  

Small mammal (<2 kg) numbers have declined dramatically in northern Australia in recent decades. Fire regimes, characterised by frequent, extensive, late-season wildfires, are implicated in this decline. Here, we compare the effect of fire extent, in conjunction with fire frequency, season and spatial heterogeneity (patchiness) of the burnt area, on mammal declines in Kakadu National Park over a recent decadal period. Fire extent – an index incorporating fire size and fire frequency – was the best predictor of mammal declines, and was superior to the proportion of the surrounding area burnt and fire patchiness. Point-based fire frequency, a commonly used index for characterising fire effects, was a weak predictor of declines. Small-scale burns affected small mammals least of all. Crucially, the most important aspects of fire regimes that are associated with declines are spatial ones; extensive fires (at scales larger than the home ranges of small mammals) are the most detrimental, indicating that small mammals may not easily escape the effects of large and less patchy fires. Notwithstanding considerable management effort, the current fire regime in this large conservation reserve is detrimental to the native mammal fauna, and more targeted management is required to reduce fire size.


2014 ◽  
Vol 36 (4) ◽  
pp. 347 ◽  
Author(s):  
L. P. Hunt

The world’s rangelands are often seen as offering considerable potential as a carbon (C) sink, which could contribute to the management of atmospheric C levels, but there are often few data available to assess this potential or to inform the type of management regimes that would be necessary. This paper reports on a review of the literature, a field study and modelling of C stocks under a selection of experimental fire regimes in two plant communities in Australia’s northern rangelands. The field study on an open eucalypt savanna woodland and a savanna grassland-open shrubland suggested that fire regime had no effect or an inconsistent effect on aboveground C stocks. However, modelling using the Century model for the open woodland site showed that increasing fire frequency was associated with reduced aboveground and soil C stocks. Thus, while infrequent fires allowed C stocks to increase (10-yearly fire) or remain stable (6-yearly fire) over a modelled 58-year period, a regime of more frequent fires (4- and 2-yearly fires) reduced C stocks over time. Simulation of C dynamics over 93 years of pastoral settlement suggested that total C stocks had increased by 9.5 t ha–1, largely due to an increase in C in woody vegetation following a reduction in fire frequency associated with pastoral settlement. Frequent burning, as recommended to maintain low woody density and promote pasture production for grazing, will, therefore, reduce aboveground and to a lesser extent soil C stocks where there has been a history of infrequent fire. The opportunities for pastoralists to increase C stocks will depend on the frequency of fire and vegetation type, especially its woodiness or potential woodiness. Reducing fire frequency in woody rangelands will increase C stocks but may have adverse effects on pasture and livestock production. Reducing grazing pressure or destocking might also increase C stocks but may be relevant only when a property is overstocked or where relatively unproductive land could be taken out of livestock production. Any C gains from altering fire and grazing management are likely to be modest.


Sign in / Sign up

Export Citation Format

Share Document