Predicting Pinus ponderosa Mortality From Dormant Season and Growing-Season Fire Injury

1993 ◽  
Vol 3 (2) ◽  
pp. 65 ◽  
Author(s):  
MG Harrington

Understory prescribed burning was conducted in an immature Pinus ponderosa (ponderosa pine) stand in southwestern Colorado during three seasons, late spring, midsummer, and autumn. Tree mortality from various levels of crown scorch was compared for the different seasons of injury. A total of 526 trees of different sizes, with crown scorch ranging from 20 to 100%, were monitored annually for 10 years. Over 80% of the 10-year mortality from injury in all three seasons had occurred by year 3, with over 90% occurring by year 4. Mortality of trees scorched in the spring and summer was about 2.5 times greater than that in the autumn for similar crown damage. Most trees larger than 18 cm in diameter survived autumn injury, even with greater than 90% scorching. Following spring and summer injury, trees smaller than 10 cm in diameter died readily with greater than 50% scorching, but about 90% crown scorch was required by large trees to be lethal. A logistic regression model was developed to predict the probability of mortality given tree size, scorch class, and season of injury. Because mortality was similar within scorch classes less than 90%, they were combined into a single class. Scorch thresholds with large increases in mortality occurred at 90% and 100% crown scorch. The season variable includes two groups, dormant (autumn) and growing (spring and summer). Use of this model to predict mortality of immature P. ponderosa is appropriate where stand, fuel, and fire conditions resemble those of this study.

1999 ◽  
Vol 14 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Dayna M. Ayers ◽  
Donald J. Bedunah ◽  
Michael G. Harrington

Abstract In many western Montana ponderosa pine (Pinus ponderosa) stands, fire suppression and past selective logging of large trees have resulted in conditions favoring succession to dense stands of shade-tolerant, but insect- and disease-prone Douglas-fir (Pseudotsuga menziesii). Stand thinning and understory prescribed burning have been proposed as surrogates for pre-Euro-American settlement ecological processes and as potential treatments to improve declining forest condition and reduce the probability of severe wildfire. To test the effectiveness of these silvicultural techniques on overstory and understory conditions, research is ongoing in the Lick Creek Demonstration Site in the Bitterroot National Forest, Montana. Our research examined the response (mortality and vigor) of the dominant browse species, antelope bitterbrush (Purshia tridentata) and Scouler's willow (Salix scouleriana), to a ponderosa pine stand restoration project utilizing four treatments: (1) a shelterwood cut that removed 53% of the tree basal area; (2) a shelterwood cut with a low fuel consumption burn; (3) a shelterwood cut with a high fuel consumption burn; and (4) a control. Prior to the application of treatments, 1,856 bitterbrush and 871 willow were located, and their survival and vigor subsequently monitored for 2 yr posttreatment. The cut and burn treatments resulted in the greatest reduction in antelope bitterbrush and Scouler's willow density averaging 66% and 24% of pretreatment density, respectively. The shelterwood cut reduced bitterbrush and Scouler's willow density by 35% and 14%, respectively. On treatments receiving a shelterwood cut (all treatments but the control), but where antelope bitterbrush and Scouler's willow did not have fire damage, mortality was 45% for bitterbrush and 20% for willow, respectively. For bitterbrush and Scouler's willow plants that received fire damage, mortality was 72% for bitterbrush and 19% for willow. Although the burn and shelterwood harvest treatments resulted in reduced density of antelope bitterbrush and Scouler's willow 2 yr posttreatment, these treatments increased vigor of both species and created mineral seedbeds that may be necessary for establishment of seedlings. West. J. Appl. For. 14(3):137-143.


2004 ◽  
Vol 34 (6) ◽  
pp. 1343-1347 ◽  
Author(s):  
Phillip van Mantgem ◽  
Mark Schwartz

We subjected 159 small ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) to treatments designed to test the relative importance of stem damage as a predictor of postfire mortality. The treatments consisted of a group with the basal bark artificially thinned, a second group with fuels removed from the base of the stem, and an untreated control. Following prescribed burning, crown scorch severity was equivalent among the groups. Postfire mortality was significantly less frequent in the fuels removal group than in the bark removal and control groups. No model of mortality for the fuels removal group was possible, because dead trees constituted <4% of subject trees. Mortality in the bark removal group was best predicted by crown scorch and stem scorch severity, whereas death in the control group was predicted by crown scorch severity and bark thickness. The relative lack of mortality in the fuels removal group and the increased sensitivity to stem damage in the bark removal group suggest that stem damage is a critical determinant of postfire mortality for small ponderosa pine.


2012 ◽  
Vol 21 (8) ◽  
pp. 1004 ◽  
Author(s):  
Susan J. Prichard ◽  
Maureen C. Kennedy

Fuel reduction treatments are increasingly used to mitigate future wildfire severity in dry forests, but few opportunities exist to assess their effectiveness. We evaluated the influence of fuel treatment, tree size and species on tree mortality following a large wildfire event in recent thin-only, thin and prescribed burn (thin-Rx) units. Of the trees that died within the first 3 years, most died in the first year regardless of treatment. First-year mortality was much higher in control and thin-only units (65 and 52%) than in thin-Rx units (37%). Cumulative third-year mortality followed a similar trend (78 and 64% in control and thin-only units) v. 43% in thin-Rx units. Percentage crown scorch is a strong predictor of mortality and is highly dependent on fuel treatment. Across all treatments, Pinus ponderosa had a lower probability of post-fire mortality than did Pseudotsuga menziesii. Finally, the probability of beetle attack on surviving trees was highest in large-diameter trees within thin-only treatments and lowest within thin-Rx treatments. This study contributes further evidence supporting the effectiveness of thinning and prescribed burning on mitigating post-fire tree mortality. We also present evidence that a combination of thinning and prescribed burning is associated with lower incidence of post-fire bark beetle attack.


2004 ◽  
Vol 19 (3) ◽  
pp. 149-153 ◽  
Author(s):  
Peter Z. Fulé ◽  
Jason L. Jerman ◽  
Peter J. Gould

Abstract Intensive thinning prescriptions intended to restore historic forest structure have produced heavy broadcast slash fuel loads in northwestern Arizona, sometimes leading to high tree mortality following prescribed burning. Mechanical slash compression with a D-6 bulldozer to reduce the severity of fire effects on residual trees was evaluated. Ten of 42 measured trees (24%) died within 2 years after burning of broadcast slash, and crown scorch of trees without slash compression treatment averaged 26%. In contrast, no trees died after burning of compressed slash and crown scorch averaged <3%, even though the total fuel loading was indistinguishable from the broadcast slash treatment. The practice of raking fuels away from the boles of old-growth trees also contributed to reduced scorch as compared to younger, unraked trees. Slash compression is a viable method of reducing mortality, offering ecological and economical tradeoffs. Benefits include the ability to reduce large quantities of slash, safeguarding old-growth tree survival while rapidly achieving open forest structure. Costs include paying for equipment operation as well as the possibility of damage to soils or plants. West. J. Appl. For. 19(3):149–153.


2009 ◽  
Vol 18 (7) ◽  
pp. 857 ◽  
Author(s):  
Chad T. Hanson ◽  
Malcolm P. North

With growing debate over the impacts of post-fire salvage logging in conifer forests of the western USA, managers need accurate assessments of tree survival when significant proportions of the crown have been scorched. The accuracy of fire severity measurements will be affected if trees that initially appear to be fire-killed prove to be viable after longer observation. Our goal was to quantify the extent to which three common Sierra Nevada conifer species may ‘flush’ (produce new foliage in the year following a fire from scorched portions of the crown) and survive after fire, and to identify tree or burn characteristics associated with survival. We found that, among ponderosa pines (Pinus ponderosa Dougl. ex. Laws) and Jeffrey pines (Pinus jeffreyi Grev. & Balf) with 100% initial crown scorch (no green foliage following the fire), the majority of mature trees flushed, and survived. Red fir (Abies magnifica A. Murr.) with high crown scorch (mean = 90%) also flushed, and most large trees survived. Our results indicate that, if flushing is not taken into account, fire severity assessments will tend to overestimate mortality and post-fire salvage could remove many large trees that appear dead but are not.


2008 ◽  
Vol 38 (4) ◽  
pp. 844-850 ◽  
Author(s):  
Gregory Peters ◽  
Anna Sala

Thinning and thinning followed by prescribed fire are common management practices intended to restore historic conditions in low-elevation ponderosa pine ( Pinus ponderosa Dougl. ex P. & C. Laws.) forests of the northern Rocky Mountains. While these treatments generally ameliorate the physiology and growth of residual trees, treatment-specific effects on reproductive output are not known. We examined reproductive output of second-growth ponderosa pine in western Montana 9 years after the application of four treatments: thinning, thinning followed by spring prescribed fire, thinning followed by fall prescribed fire, and unthinned control stands. Field and greenhouse observations indicated that reproductive traits vary depending on the specific management treatment. Cone production was significantly higher in trees from all actively managed stands relative to control trees. Trees subjected to prescribed fire produced cones with higher numbers of filled seeds than trees in unburned treatments. Seed mass, percentage germination, and seedling biomass were significantly lower for seeds from trees in spring burn treatments relative to all others and were generally higher in trees from fall burn treatments. We show for the first time that thinning and prescribed-burning treatments can influence reproductive output in ponderosa pine.


2003 ◽  
Vol 33 (5) ◽  
pp. 870-884 ◽  
Author(s):  
Rick G Kelsey ◽  
Gladwin Joseph

Sixteen days after a September wildfire, ethanol and water were measured in phloem and sapwood at breast height and the base of Pinus ponderosa Dougl. ex P. & C. Laws. with zero (control), moderate, heavy, and severe crown scorch. The quantity of ethanol increased with each level of injury, resulting in trees with severe scorch containing 15 and 53 times more phloem and sapwood ethanol, respectively, than controls. Ethanol concentrations in the sapwood and adjacent phloem were related, probably as a result of diffusion. Upward movement in xylem sap was most likely responsible for the relationship between sapwood ethanol concentrations at breast height and the stem base. As trees recovered from their heat injuries, the ethanol concentrations declined. In contrast, ethanol accumulated in dead trees that lost their entire crowns in the fire. Various bark and xylophagous beetles landed in greater numbers on fire-damaged trees than on controls the following spring and summer, suggesting that ethanol was being released to the atmosphere and influencing beetle behavior. Beetle landing was more strongly related to sapwood ethanol concentrations the previous September than in May. Sapwood ethanol measured 16 days after the fire was the best predictor of second-year mortality for trees with heavy and severe crown scorch.


2020 ◽  
Vol 113 (6) ◽  
pp. 3017-3020
Author(s):  
Monica L Gaylord ◽  
Stephen R McKelvey ◽  
Christopher J Fettig ◽  
Joel D McMillin

Abstract Recent outbreaks of engraver beetles, Ips spp. De Geer (Coleoptera: Curculionidae; Scolytinae), in ponderosa pine, Pinus ponderosa var. scopulorum Engelm. (Pinales: Pinaceae), forests of northern Arizona have resulted in widespread tree mortality. Current treatment options, such as spraying individual P. ponderosa with insecticides or deep watering of P. ponderosa in urban and periurban settings, are limited in applicability and scale. Thinning stands to increase tree vigor is also recommended, but appropriate timing is crucial. Antiaggregation pheromones, widely used to protect high-value trees or areas against attacks by several species of Dendroctonus Erichson (Coleoptera: Curculionidae; Scolytinae), would provide a feasible alternative with less environmental impacts than current treatments. We evaluated the efficacy of the antiaggregation pheromone verbenone (4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one) in reducing attraction of pine engraver, I. pini (Say), to funnel traps baited with their aggregation pheromone in two trapping assays. Treatments included 1) unbaited control, 2) aggregation pheromone (bait), 3) bait with verbenone deployed from a pouch, and 4) bait with verbenone deployed from a flowable and biodegradable formulation (SPLAT Verb, ISCA Technologies Inc., Riverside, CA). Unbaited traps caught no beetles. In both assays, baited traps caught significantly more I. pini than traps with either formulation of verbenone, and no significant difference was observed between the verbenone pouch and SPLAT Verb. In the second assay, we also examined responses of Temnochila chlorodia (Mannerheim) (Coleoptera: Trogositidae), a common bark beetle predator. Traps containing verbenone pouches caught significantly fewer T. chlorodia than the baited control and SPLAT Verb treatments. We conclude that verbenone shows promise for reducing tree mortality from I. pini.


2008 ◽  
Vol 38 (5) ◽  
pp. 924-935 ◽  
Author(s):  
Christopher J. Fettig ◽  
Robert R. Borys ◽  
Stephen R. McKelvey ◽  
Christopher P. Dabney

Mechanical thinning and the application of prescribed fire are commonly used tools in the restoration of fire-adapted forest ecosystems. However, few studies have explored their effects on subsequent amounts of bark beetle caused tree mortality in interior ponderosa pine, Pinus ponderosa Dougl. ex P. & C. Laws. var. ponderosa. In this study, we examined bark beetle responses to creation of midseral (low diversity) and late-seral stages (high diversity) and the application of prescribed fire on 12 experimental units ranging in size from 76 to 136 ha. A total of 9500 (5.0% of all trees) Pinus and Abies trees died 2 years after treatment of which 28.8% (2733 trees) was attributed to bark beetle colonization. No significant difference in the mean percentage of trees colonized by bark beetles was found between low diversity and high diversity. The application of prescribed fire resulted in significant increases in bark beetle caused tree mortality (all species) and for western pine beetle, Dendroctonus brevicomis LeConte, mountain pine beetle, Dendroctonus ponderosae Hopkins, Ips spp., and fir engraver, Scolytus ventralis LeConte, individually. Approximately 85.6% (2339 trees) of all bark beetle caused tree mortality occurred on burned split plots. The implications of these and other results to sustainable forest management are discussed.


1991 ◽  
Vol 21 (5) ◽  
pp. 626-634 ◽  
Author(s):  
D. Michael Swezy ◽  
James K. Agee

Old-growth Pinusponderosa Dougl. stands were surveyed at Crater Lake National Park to investigate potential accelerated mortality of large pines due to prescribed burning. Mortality of P. ponderosa greater than 22 cm diameter at breast height was higher in burned areas (19.5%) than in unburned areas (6.6%), and early-season burns had over 30% mortality. Mortality was associated with fire severity, as measured by scorch height and ground char, season of burning, and tree vigor. Pines of high, moderate, and low vigor were subjected to a prescribed burn in June; half of the trees had debris raked from tree bases as an additional treatment. Lethal heat loads (>60 °C) occurred in >75% of samples at the soil surface and at 5 cm soil depth, with duration exceeding 5 h. Burning reduced fine-root dry weight 50–75% 1 and 5 months after burning; raking and burning reduced fine-root dry weight more than burning alone after 1 month and had similar effects to burning after 5 months. A low-vigor tree that had been raked and burned died by the beginning of the fourth dry season after burning. Present fuel loads may be too high to burn during spring if old-growth P. ponderosa are to be protected.


Sign in / Sign up

Export Citation Format

Share Document