Timing and synchrony of births in bighorn sheep: implications for reintroduction and conservation

2012 ◽  
Vol 39 (7) ◽  
pp. 565 ◽  
Author(s):  
Jericho C. Whiting ◽  
Daniel D. Olson ◽  
Justin M. Shannon ◽  
R. Terry Bowyer ◽  
Robert W. Klaver ◽  
...  

Context Timing (mean birthdate) and synchrony (variance around that date) of births can influence survival of young and growth in ungulate populations. Some restored populations of ungulates may not adjust these life-history characteristics to environments of release sites until several years after release, which may influence success of reintroductions. Aims We quantified timing and synchrony of births from 2005 to 2007 in four populations of reintroduced bighorn sheep (Ovis canadensis) occupying two ecoregions (Central Basin and Range and Wasatch and Uinta Mountains) in Utah, USA, to investigate whether bighorns would adjust these life-history characteristics to environmental conditions of the two ecoregions. We also compared timing and synchrony of births for bighorns in their source herd (Antelope Island) with bighorns in an ecologically similar release site (Stansbury Mountains) during 2006 and 2007. Methods We relocated female bighorns to record birthdates of young, and observed groups of collared bighorns to quantify use of elevation by those ungulates. We also calculated the initiation, rate and timing of peak green-up by ecoregion, using the normalised difference vegetation index. Key results We quantified 274 birthdates, and although only separated by 57 km, bighorn populations occupying the Central Basin and Range Mountains gave birth an average of 29 days earlier than did those on the Wasatch and Uinta Mountains, which corresponded with the initiation of vegetation green-up. Additionally, bighorn sheep on the Stansbury Mountains (ecologically similar release site) gave birth at similar times as did bighorns on Antelope Island (source area). Conclusions Populations of bighorn sheep that were reintroduced into adjacent ecoregions adjusted timing of births to environments and green-up of vegetation in restoration areas. Timing and synchrony of births for reintroduced bighorn sheep in an ecologically similar release site were the same as those of their source area. Implications Consideration should be given to the adjustment of timing and synchrony of births when reintroducing bighorns, especially when animals are released into different ecoregions. Also, biologists should select release sites that are ecologically similar to source areas, thereby reducing potential negative effects of animals adjusting timing and synchrony of births to environmental conditions of restoration areas.

2020 ◽  
Vol 639 ◽  
pp. 185-197 ◽  
Author(s):  
MJ Malick ◽  
ME Hunsicker ◽  
MA Haltuch ◽  
SL Parker-Stetter ◽  
AM Berger ◽  
...  

Environmental conditions can have spatially complex effects on the dynamics of marine fish stocks that change across life-history stages. Yet the potential for non-stationary environmental effects across multiple dimensions, e.g. space and ontogeny, are rarely considered. In this study, we examined the evidence for spatial and ontogenetic non-stationary temperature effects on Pacific hake Merluccius productus biomass along the west coast of North America. Specifically, we used Bayesian additive models to estimate the effects of temperature on Pacific hake biomass distribution and whether the effects change across space or life-history stage. We found latitudinal differences in the effects of temperature on mature Pacific hake distribution (i.e. age 3 and older); warmer than average subsurface temperatures were associated with higher biomass north of Vancouver Island, but lower biomass offshore of Washington and southern Vancouver Island. In contrast, immature Pacific hake distribution (i.e. age 2) was better explained by a nonlinear temperature effect; cooler than average temperatures were associated with higher biomass coastwide. Together, our results suggest that Pacific hake distribution is driven by interactions between age composition and environmental conditions and highlight the importance of accounting for varying environmental effects across multiple dimensions.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Louise C Archer ◽  
Stephen A Hutton ◽  
Luke Harman ◽  
W Russell Poole ◽  
Patrick Gargan ◽  
...  

Abstract Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR—baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.


2008 ◽  
Vol 24 (2) ◽  
pp. 213-217 ◽  
Author(s):  
I. D. Leonardos ◽  
A. C. Tsikliras ◽  
V. Eleftheriou ◽  
Y. Cladas ◽  
I. Kagalou ◽  
...  

2012 ◽  
Vol 96 (10-11) ◽  
pp. 1187-1226 ◽  
Author(s):  
Jennifer L. Nielsen ◽  
Gregory T. Ruggerone ◽  
Christian E. Zimmerman

2010 ◽  
Vol 42 (3) ◽  
pp. 339-346 ◽  
Author(s):  
Andreas ENGELEN ◽  
Peter CONVEY ◽  
Sieglinde OTT

AbstractCoal Nunatak is an ice-free inland nunatak located on southern Alexander Island, adjacent to the west coast of the Antarctic Peninsula. Situated close to the Antarctic continent, it is characterized by harsh environmental conditions. Macroscopic colonization is restricted to micro-niches offering suitable conditions for a small number of lichens and mosses. The extreme environmental conditions place particular pressures on colonizers. Lepraria borealis is the dominant crustose lichen species present on Coal Nunatak, and shows distinctive features in its life history strategy, in particular expressing unusually low selectivity of the mycobiont towards potential photobionts. To assess selectivity, we measured algal DNA sequence polymorphism in a region of 480–660 bp of the nuclear internal transcribed spacer region of ribosomal DNA. We identified three different photobiont species, belonging to two different genera. We interpret this strategy as being advantageous in facilitating the colonization and community dominance of L. borealis under the isolation and extreme environmental conditions of Coal Nunatak.


2006 ◽  
Vol 58 (4) ◽  
pp. 562-566 ◽  
Author(s):  
C. Reigada ◽  
W.A.C. Godoy

The effect of larval density on the survival, fecundity and body size at two temperatures in experimental populations of C. megacephala was studied. No effect from simultaneous influence of density and temperature on life history characteristics of C. megacephala was found. Significant effects of density and temperature on survival, fecundity and body size were observed. The importance of these results for the population dynamics of C. megacephala is discussed.


Sign in / Sign up

Export Citation Format

Share Document