Foraging trip strategies and habitat use during late pup rearing by lactating Australian fur seals

2011 ◽  
Vol 59 (4) ◽  
pp. 216 ◽  
Author(s):  
Roger Kirkwood ◽  
John P. Y. Arnould

Australian fur seals (Arctocephalus pusillus doriferus) are the most conspicuous and abundant marine mammal in shelf waters of south-eastern Australia. To successfully rear offspring, the females must encounter sufficient prey on each foraging trip out of a central place for periods up to11 months each year. We investigated foraging trip strategies and habitat use by the females in three winter–spring periods, 2001–03, from four colonies that span the species’ latitudinal range and contribute 80% of pup production. Trip durations of 37 females averaged 6.1 ± 0.5 (s.e.) days, although >90% of the seal’s time at sea was spent <150 km travel (<2 days) away. Most females exhibited strong fidelities to individually preferred hot-spots. Females from colonies adjacent to productive shelf-edge waters generally had shorter trips, had smaller ranges, foraged closer to colonies and exhibited less diversity in trip strategies than did those from colonies more distant from a shelf-edge. From a management perspective, there was minimal overlap (<1%) between where females foraged and a system of marine reserves established in 2007, suggesting that habitats visited by lactating Australian fur seals currently receive minimal legislative protection.




2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Monique Ladds ◽  
David Rosen ◽  
Carling Gerlinsky ◽  
David Slip ◽  
Robert Harcourt

Abstract Physiology places constraints on an animal’s ability to forage and those unable to adapt to changing conditions may face increased challenges to reproduce and survive. As the global marine environment continues to change, small, air-breathing, endothermic marine predators such as otariids (fur seals and sea lions) and particularly females, who are constrained by central place foraging during breeding, may experience increased difficulties in successfully obtaining adequate food resources. We explored whether physiological limits of female otariids may be innately related to body morphology (fur seals vs sea lions) and/or dictate foraging strategies (epipelagic vs mesopelagic or benthic). We conducted a systematic review of the increased body of literature since the original reviews of Costa et al. (When does physiology limit the foraging behaviour of freely diving mammals? Int Congr Ser 2004;1275:359–366) and Arnould and Costa (Sea lions in drag, fur seals incognito: insights from the otariid deviants. In Sea Lions of the World Fairbanks. Alaska Sea Grant College Program, Alaska, USA, pp. 309–324, 2006) on behavioural (dive duration and depth) and physiological (total body oxygen stores and diving metabolic rates) parameters. We estimated calculated aerobic dive limit (cADL—estimated duration of aerobic dives) for species and used simulations to predict the proportion of dives that exceeded the cADL. We tested whether body morphology or foraging strategy was the primary predictor of these behavioural and physiological characteristics. We found that the foraging strategy compared to morphology was a better predictor of most parameters, including whether a species was more likely to exceed their cADL during a dive and the ratio of dive time to cADL. This suggests that benthic and mesopelagic divers are more likely to be foraging at their physiological capacity. For species operating near their physiological capacity (regularly exceeding their cADL), the ability to switch strategies is limited as the cost of foraging deeper and longer is disproportionally high, unless it is accompanied by physiological adaptations. It is proposed that some otariids may not have the ability to switch foraging strategies and so be unable adapt to a changing oceanic ecosystem.



2020 ◽  
Vol 167 (5) ◽  
Author(s):  
Sarah L. Dwyer ◽  
Matthew D. M. Pawley ◽  
Deanna M. Clement ◽  
Karen A. Stockin


2006 ◽  
Vol 84 (12) ◽  
pp. 1781-1788 ◽  
Author(s):  
Roger Kirkwood ◽  
Michael Lynch ◽  
Nick Gales ◽  
Peter Dann ◽  
Michael Sumner

Foraging by adult male otariids, a demographic component that often interacts with commercial fisheries, are poorly known. To assess movement patterns and habitat use, nine adult male Australian fur seals ( Arctocephalus pusillus doriferus Wood Jones, 1925) from Seal Rocks, in northern Bass Strait, southeastern Australia, were tracked for periods ranging from 66 to 223 d during 1999–2001. Mean ± SD at-sea and on-land durations were 6.9 ± 2.1 d (range 2.3–10.3 d, n = 9 seals) and 2.4 ± 0.9 d (range 0.8–4.1 d), respectively. All seals foraged almost exclusively in continental shelf waters and mostly (65%–97% of time at sea) in water columns that were between 40 and 100 m deep. Six of nine seals tracked for >30 d spent 64%–98% of their time-at-sea foraging at distances <200 km from Seal Rocks, although the maximum distance achieved from the colony was 1208 km. The seals’ foraging ranges overlapped with the ranges of operation of virtually all fin-fish fisheries in southeastern Australia, but fisheries overlap was low in the most frequented foraging area of central-western Bass Strait.



2020 ◽  
Vol 36 (4) ◽  
pp. 1083-1096
Author(s):  
Jennifer K. Olson ◽  
John Aschoff ◽  
Alice Goble ◽  
Shawn Larson ◽  
Joseph K. Gaydos


2008 ◽  
Vol 23 (4) ◽  
pp. 377-389 ◽  
Author(s):  
Rick S. Taylor ◽  
Joanne M. Oldland ◽  
Michael F. Clarke


2018 ◽  
Vol 69 (8) ◽  
pp. 1259 ◽  
Author(s):  
D. R. Dawson ◽  
W. M. Koster

Riverine fishes are among the most imperilled fauna in the world; however, for many species, there is little or no understanding of their ecological requirements. The Australian grayling (Prototroctes maraena) is a small diadromous fish endemic to rivers in south-eastern Australia that has declined considerably in range and abundance and is listed as threatened nationally. To improve understanding of the species’ movement ecology and to inform the development of conservation management actions, we examined the day-to-day movements and habitat use of Australian grayling (n=7) over 8 weeks by using radio-telemetry. Tagged individuals of Australian grayling typically occupied restricted (i.e. tens to hundreds of metres) reaches of stream, and were mostly located in moderate- to fast-flowing habitats (i.e. glide or run), although, at night, use of slower-flowing habitats (i.e. pools) increased. They also undertook longer-distance downstream movements during a period of increased streamflow. Incorporation of such information into management strategies has the potential to improve our capacity to maintain or re-instate the conditions required to conserve and restore Australian grayling populations.



2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ophélie Sagnol ◽  
Femke Reitsma ◽  
Christoph Richter ◽  
Laurence H. Field

Determining the position of animals at sea can be particularly difficult and yet, accurate range and position of animals at sea are essential to answer a wide range of biological questions. Shore-based theodolite techniques have been used in a number of studies to examine marine mammal movement patterns and habitat use, offering reliable position measurements. In this study we explored the accuracy of theodolite measurements by comparing positional information of the same objects using two independent techniques: a shore-based theodolite station and an onboard GPS over a range of 25 km from the shore-based station. The technique was developed to study the habitat use of sperm whales (Physeter macrocephalus) off Kaikoura, New Zealand. We observed that the position accuracy fell rapidly with an increase in range from the shore-based station. Results showed that the horizontal angle was accurately determined, but this was not the case for the vertical angle. We calibrated the position of objects at sea with a regression-based correction to fit the difference in distance between simultaneously recorded theodolite fixes and GPS positions. This approach revealed the necessity to calibrate theodolite measurements with objects at sea of known position.



Author(s):  
KA Lee ◽  
PA Butcher ◽  
RG Harcourt ◽  
TA Patterson ◽  
VM Peddemors ◽  
...  


2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Cassie N. Speakman ◽  
Andrew J. Hoskins ◽  
Mark A. Hindell ◽  
Daniel P. Costa ◽  
Jason R. Hartog ◽  
...  

The highly dynamic nature of the marine environment can have a substantial influence on the foraging behaviour and spatial distribution of marine predators, particularly in pelagic marine systems. However, knowledge of the susceptibility of benthic marine predators to environmental variability is limited. This study investigated the influence of local-scale environmental conditions and large-scale climate indices on the spatial distribution and habitat use in the benthic foraging Australian fur seal ( Arctocephalus pusillus doriferus ; AUFS). Female AUFS provisioning pups were instrumented with GPS or ARGOS platform terminal transmitter tags during the austral winters of 2001–2019 at Kanowna Island, south-eastern Australia. Individuals were most susceptible to changes in the Southern Oscillation Index that measures the strength of the El Niño Southern Oscillation, with larger foraging ranges, greater distances travelled and more dispersed movement associated with 1-yr lagged La Niña-like conditions. Additionally, the total distance travelled was negatively correlated with the current year sea surface temperature and 1-yr lagged Indian Ocean Dipole, and positively correlated with 1-yr lagged chlorophyll- a concentration. These results suggest that environmental variation may influence the spatial distribution and availability of prey, even within benthic marine systems.



Sign in / Sign up

Export Citation Format

Share Document