Cation content of salt gland secretion and tears in the brolga, Grus rubicundus (Perry) (Aves : Gruidae)

1973 ◽  
Vol 21 (4) ◽  
pp. 515 ◽  
Author(s):  
MR Hughes ◽  
JG Blackman

This is the first report of salt gland secretion in cranes (Gruidae). The sodium and potassium concentrations of the plasma, tears, salt gland secretion, and urine of the brolga were determined. Tear sodium was equal to plasma sodium; tear plasma was four times as concentrated as plasma potassium. These values were normal for tears. The salt gland secretion sodium concentration (about 300 m-equivll) was lower than that reported for other NaC1-injected birds. This may be due to the diet, small gland size, or to insufficient stress. The salt gland secretion to plasma ratios were the same for sodium and potassium. This is unusual. The urine had a lower sodium concentration than the plasma.

1962 ◽  
Vol 40 (1) ◽  
pp. 113-122 ◽  
Author(s):  
G. S. Kanter

The handling of sodium and potassium by the renal tubules at various levels of hypothermia was studied. Fourteen dogs were anesthetized with 30 mg/kg sodium pentobarbital. After suitable control clearance measurements, the rectal temperature was lowered progressively by ice-packing to about 25 °C while renal clearances were continuously measured. Artificial respiration was not used. No change in plasma sodium was detected but plasma potassium fell significantly from a control value of 4.1 ± 0.09 meq/1. at 38 °C to 3.4 ± 0.12 meq/1. at 25 °C. Urine sodium concentration fell during exposure to cold while potassium concentration increased slightly. In spite of the marked fall in glomerular nitration rate (69.0 ± 3.1 ml/minute control to 17.0 ± 3.6 ml/minute at 25 °C) the final urine flow at 25 °C was slightly greater than that of control. The clearance ratios (in percentage) increased significantly, reflecting the marked decrease in tubular reabsorption: water, 0.49 ± 0.05 at 38 °C to 2.02 ± 0.25 at 25 °C; sodium, 0.47 ± 0.12 to 1.13 ± 0.27; potassium, 18.0 ± 2.6 to 54.0 ± 12.0. The difference in clearance ratio alterations is a reflection of the dissimilar effect of hypothermia on particular renal regulations.


1958 ◽  
Vol 36 (3) ◽  
pp. 333-338 ◽  
Author(s):  
F. A. Sréter ◽  
Sydney M. Friedman

After running a distance of 100 meters in 7 minutes, untrained rats showed a rise in plasma potassium and a fall in plasma sodium as measured in tail vein samples. These changes are in accord with in vitro observations of the effects of exercise on isolated muscle preparations and similarly are taken to indicate a gain of sodium and a loss of potassium by the exercised muscles in the whole animal. Within 10 minutes of completion of the exercise, plasma sodium concentration was restored to normal while potassium was restored within 20 minutes. Exercise was accompanied by a fall in haematocrit, which remained low for up to 40 minutes. A period of 2 months of preliminary training modified the response to exercise. In these trained animals, a fall in sodium concentration occurred as before but the rise in potassium concentration was less in degree and the haematocrit did not change. It is suggested that the rate of increase of plasma potassium is an index of muscle efficiency while the height of plasma potassium is correlated with the fatigue limit of exercise.


1977 ◽  
Vol 232 (5) ◽  
pp. R185-R189
Author(s):  
I. H. Zucker ◽  
C. Gilmore ◽  
J. Dietz ◽  
J. P. Gilmore

The influence of acute intravascular volume expansion on salt gland secretion of conscious, adult geese was investigated. The intravenous administration of 5% dextran in Krebs-bicarbonate-Ringer solution in an amount equivalent to 30% of the estimated blood volume caused a transient but highly significant increase in salt gland secretion independent of changes in plasma osmolality or sodium concentration. Intravenous veratrine (60 microng) caused a similar increase in salt gland secretion only when administered after the volume load. Intravenous 5% NaCl always caused a prolonged and significant increase in salt gland secretion which was not potentiated by veratrine. Volume expansion and hypertonic saline caused a significant tachycardia while veratrine caused a significant bradycardia. It is concluded that a volume component may contribute to the initiation of salt gland secretion in the goose and that the peripheral receptor involved is most likely vascular in origin.


1969 ◽  
Vol 47 (6) ◽  
pp. 1133-1138 ◽  
Author(s):  
Maryanne Robinson Hughes ◽  
Frank E. Ruch Jr.

The spontaneously produced salt gland secretion (SGS) and tears of the domestic duck, Anas platyrhynchos, were analyzed for sodium (Na), potassium (K), and chloride (Cl) (Cl in SGS only). Acclimation to seawater did not enhance the concentrating ability of the salt glands. The NaCl concentration exceeded that of seawater by only a small margin. The tears of saline-acclimated birds contained less Na and more K than birds drinking water with low NaCl content. Salt stress significantly increased the weight of the salt glands and of the Harderian glands; the lacrymal glands were not affected. An estimation of the relative possible contribution of the cloacal fluid, SGS, and tears to cation excretion was made.


1962 ◽  
Vol 40 (1) ◽  
pp. 113-122 ◽  
Author(s):  
G. S. Kanter

The handling of sodium and potassium by the renal tubules at various levels of hypothermia was studied. Fourteen dogs were anesthetized with 30 mg/kg sodium pentobarbital. After suitable control clearance measurements, the rectal temperature was lowered progressively by ice-packing to about 25 °C while renal clearances were continuously measured. Artificial respiration was not used. No change in plasma sodium was detected but plasma potassium fell significantly from a control value of 4.1 ± 0.09 meq/1. at 38 °C to 3.4 ± 0.12 meq/1. at 25 °C. Urine sodium concentration fell during exposure to cold while potassium concentration increased slightly. In spite of the marked fall in glomerular nitration rate (69.0 ± 3.1 ml/minute control to 17.0 ± 3.6 ml/minute at 25 °C) the final urine flow at 25 °C was slightly greater than that of control. The clearance ratios (in percentage) increased significantly, reflecting the marked decrease in tubular reabsorption: water, 0.49 ± 0.05 at 38 °C to 2.02 ± 0.25 at 25 °C; sodium, 0.47 ± 0.12 to 1.13 ± 0.27; potassium, 18.0 ± 2.6 to 54.0 ± 12.0. The difference in clearance ratio alterations is a reflection of the dissimilar effect of hypothermia on particular renal regulations.


1958 ◽  
Vol 36 (1) ◽  
pp. 333-338
Author(s):  
F. A. Sréter ◽  
Sydney M. Friedman

After running a distance of 100 meters in 7 minutes, untrained rats showed a rise in plasma potassium and a fall in plasma sodium as measured in tail vein samples. These changes are in accord with in vitro observations of the effects of exercise on isolated muscle preparations and similarly are taken to indicate a gain of sodium and a loss of potassium by the exercised muscles in the whole animal. Within 10 minutes of completion of the exercise, plasma sodium concentration was restored to normal while potassium was restored within 20 minutes. Exercise was accompanied by a fall in haematocrit, which remained low for up to 40 minutes. A period of 2 months of preliminary training modified the response to exercise. In these trained animals, a fall in sodium concentration occurred as before but the rise in potassium concentration was less in degree and the haematocrit did not change. It is suggested that the rate of increase of plasma potassium is an index of muscle efficiency while the height of plasma potassium is correlated with the fatigue limit of exercise.


2015 ◽  
Vol 50 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Michael A. McKenney ◽  
Kevin C. Miller ◽  
James E. Deal ◽  
Julie A. Garden-Robinson ◽  
Yeong S. Rhee

Context: Twenty-five percent of athletic trainers administer pickle juice (PJ) to treat cramping. Anecdotally, some clinicians provide multiple boluses of PJ during exercise but warn that repeated ingestion of PJ may cause hyperkalemia. To our knowledge, no researchers have examined the effect of ingesting multiple boluses of PJ on the same day or the effect of ingestion during exercise. Objective: To determine the short-term effects of ingesting a single bolus or multiple boluses of PJ on plasma variables and to characterize changes in plasma variables when individuals ingest PJ and resume exercise. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Nine euhydrated men (age = 23 ± 4 years, height = 180.9 ± 5.8 cm, mass = 80.7 ± 13.8 kg, urine specific gravity = 1.009 ± 0.005). Intervention(s): On 3 days, participants rested for 30 minutes, and then a blood sample was collected. Participants ingested 0 or 1 bolus (1 mL·kg−1 body weight) of PJ, donned sweat suits, biked vigorously for 30 minutes (approximate temperature = 37°C, relative humidity = 18%), and had a blood sample collected. They either rested for 60 seconds (0- and 1-bolus conditions) or ingested a second 1 mL·kg−1 body weight bolus of PJ (2-bolus condition). They resumed exercise for another 35 minutes. A third blood sample was collected, and they exited the environmental chamber and rested for 60 minutes (approximate temperature = 21°C, relative humidity = 18%). Blood samples were collected at 30 and 60 minutes postexercise. Main Outcome Measure(s): Plasma sodium concentration, plasma potassium concentration, plasma osmolality, and changes in plasma volume. Results: The number of PJ boluses ingested did not affect plasma sodium concentration, plasma potassium concentration, plasma osmolality, or changes in plasma volume over time. The plasma sodium concentration, plasma potassium concentration, and plasma osmolality did not exceed 144.6 mEq·L−1 (144.6 mmol·L−1), 4.98 mEq·L−1 (4.98 mmol·L−1), and 289.5 mOsm·kg−1H2O, respectively, in any condition at any time. Conclusions: Ingesting up to 2 boluses of PJ and resuming exercise caused negligible changes in blood variables. Ingesting up to 2 boluses of PJ did not increase plasma sodium concentration or cause hyperkalemia.


1986 ◽  
Vol 70 (1) ◽  
pp. 111-117 ◽  
Author(s):  
R. A. Hebden ◽  
S. M. Gardiner ◽  
T. Bennett ◽  
I. A. MacDonald

1. Intakes and urine outputs of fluid and electrolytes were measured daily in rats before, and for 3 weeks after, induction of diabetes by intraperitoneal injection of streptozotocin (STZ; 60 mg/kg); control animals received saline. 2. Water intakes and urine outputs were increased on and after the first day after injection with STZ; after a transient period of negative water balance, fluid intakes and urine outputs increased in parallel. 3. Food intake was reduced for the first 3 days after injection of STZ but thereafter there was a steady increase. On the final experimental day, the food intake of the diabetic group was 60% greater than that of the control group. 4. Urinary electrolyte excretion was increased after injection of STZ; at the end of the experiment, the increase in urinary sodium excretion was similar to the increase in intake but the increase in urinary potassium excretion was less. 5. On day 21 after injection of STZ plasma sodium concentration and packed cell volume were significantly reduced in the diabetic group but plasma potassium concentration was not. 6. There was a difference between the measured osmolality and the calculated osmolarity of the plasma of the diabetic animals which was not seen in the controls. This difference was not due to pseudohyponatraemia, but was probably due to the presence of unidentified solutes, since there was a significant gap between the urinary osmolal and osmolar excretion in the diabetic animals that was not present in the control animals.


Sign in / Sign up

Export Citation Format

Share Document