scholarly journals A comparison of spermiogenesis and spermatozoal ultrastructure in Megascolecid and Lumbricid earthworms (Oligochaeta : Annelida)

1978 ◽  
Vol 26 (2) ◽  
pp. 225 ◽  
Author(s):  
BGM Jamieson

Spermiogenesis of six species of megascolecid earthworms has been investigated by electron microscopy. Numerous spermatids are joined to a central anucleate mass, forming a morula. Connection is made by a filament-clothed bridge, the zonula collaris. At least nine mitochondria are observed in a young spermatid but in all cases only six persist, with their juxtaposed surfaces radiating from a central axis, in the middle piece. A stack of golgi cisternae is present distally and is associated with the immature acrosome, which is subsequently transported proximally and interposed between nucleus and zonula collaris. Microtubules of the manchette ensheath the acrosome nucleus and incipient middle piece and, subsequently, all cytoplasm peripheral to the manchette with the exception of the plasma membrane is eliminated. Cytomorphogenetic changes, including great elongation and condensation of the nucleus, result in a free filamentous spermatozoon with a tapering tubular acrosome, an extremely elongate nucleus (total length 10 �m, cf. 20-30 �m in Lumbricus) a small but elongate middle piece (0.5 - 1.4 �m long) and long flagellum. Close agreement thus exists with spermiogenesis in the Lumbricidae, and the acrosome, which is among the most complex in the animal kingdom, shows general homology with that of Lumbricus. Significant differences from Lumbricus include the domed proximal end of the nucleus, the less discrete basal compartment, the conspicuous limen and greater separation of the outer wall of the acrosomal vesicle from the acrosome wall. A centriole with nine satellites peripheral to nine microtubules is demonstrable. A tetragon configuration in which two central fibres are added to the usual nine doublet+two central singlet microtubules is demonstrated in the proximal flagellum after a short region with a single central filament, but further distally the two fibres cease, giving the normal 9+2. Terminally the doublets are replaced by singlets and the number of microtubules is reduced. Glycogen granules are conspicuous, peripheral to the microtubules through much of the proximal axoneme as in lumbricids. A species of Cryptodrilus shows an asymmetrical 3+2 arrangement of satellites in a peripheral circlet, which exemplifies the taxonomic value of spermatozoal ultrastructure. It is confirmed that oligochaete spermatozoa are fundamentally different from those of polychaetes and archiannelids.


Author(s):  
T. G. Sarphie ◽  
C. R. Comer ◽  
D. J. Allen

Previous ultrastructural studies have characterized surface morphology during norma cell cycles in an attempt to associate specific changes with specific metabolic processes occurring within the cell. It is now known that during the synthetic ("S") stage of the cycle, when DNA and other nuclear components are synthesized, a cel undergoes a doubling in volume that is accompanied by an increase in surface area whereby its plasma membrane is elaborated into a variety of processes originally referred to as microvilli. In addition, changes in the normal distribution of glycoproteins and polysaccharides derived from cell surfaces have been reported as depreciating after cellular transformation by RNA or DNA viruses and have been associated with the state of growth, irregardless of the rate of proliferation. More specifically, examination of the surface carbohydrate content of synchronous KB cells were shown to be markedly reduced as the cell population approached division Comparison of hamster kidney fibroblasts inhibited by vinblastin sulfate while in metaphase with those not in metaphase demonstrated an appreciable decrease in surface carbohydrate in the former.



Author(s):  
Ezzatollah Keyhani ◽  
Larry F. Lemanski ◽  
Sharon L. Lemanski

Energy for sperm motility is provided by both glycolytic and respiratory pathways. Mitochondria are involved in the latter pathway and conserve energy of substrate oxidation by coupling to phosphorylation. During spermatogenesis, the mitochondria undergo extensive transformation which in many species leads to the formation of a nebemkem. The nebemkem subsequently forms into a helix around the axial filament complex in the middle piece of spermatozoa.Immature spermatozoa of axolotls contain numerous small spherical mitochondria which are randomly distributed throughout the cytoplasm (Fig. 1). As maturation progresses, the mitochondria appear to migrate to the middle piece region where they become tightly packed to form a crystalline-like sheath. The cytoplasm in this region is no longer abundant (Fig. 2) and the plasma membrane is now closely apposed to the outside of the mitochondrial layer.



Author(s):  
M. A. Hayat

Potassium permanganate has been successfully employed to study membranous structures such as endoplasmic reticulum, Golgi, plastids, plasma membrane and myelin sheath. Since KMnO4 is a strong oxidizing agent, deposition of manganese or its oxides account for some of the observed contrast in the lipoprotein membranes, but a good deal of it is due to the removal of background proteins either by dehydration agents or by volatalization under the electron beam. Tissues fixed with KMnO4 exhibit somewhat granular structure because of the deposition of large clusters of stain molecules. The gross arrangement of membranes can also be modified. Since the aim of a good fixation technique is to preserve satisfactorily the cell as a whole and not the best preservation of only a small part of it, a combination of a mixture of glutaraldehyde and acrolein to obtain general preservation and KMnO4 to enhance contrast was employed to fix plant embryos, green algae and fungi.



1992 ◽  
Vol 70 (3) ◽  
pp. 629-638 ◽  
Author(s):  
Kerry O'Donnell

Meiosis in the smut fungi Ustilago maydis and Ustilago avenae (Basidiomycota, Ustilaginales) was studied by electron microscopy of serial-sectioned freeze substituted basidia. At prophase I, a spindle pole body composed of two globular elements connected by a middle piece was attached to the extranuclear surface of each nucleus. Astral and spindle microtubules were initiated at each globular element at late prophase I to prometaphase I. During spindle initiation, the middle piece disappeared and interdigitating half-spindles entered the nucleoplasm, which was surrounded by discontinuous nuclear envelope together with perinuclear endoplasmic reticulum. Kinetochore pairs at metaphase I were analyzed to obtain a karyotype for each species. The meiotic spindle pole body replicational cycle is described. Key words: electron microscopy, freeze-substitution, meiosis, Ustilago, spindle pole body.





1996 ◽  
Vol 46 (1) ◽  
pp. 181-190 ◽  
Author(s):  
J.I. Martí ◽  
E Del Cacho ◽  
A. Josa ◽  
E. Espinosa ◽  
T. Muiño-Blanco


1996 ◽  
Vol 109 (6) ◽  
pp. 1215-1227 ◽  
Author(s):  
I. Hemery ◽  
A.M. Durand-Schneider ◽  
G. Feldmann ◽  
J.P. Vaerman ◽  
M. Maurice

In hepatocytes, newly synthesized apical plasma membrane proteins are first delivered to the basolateral surface and are supposed to reach the apical surface by transcytosis. The transcytotic pathway of apical membrane proteins and its relationship with other endosomal pathways has not been demonstrated morphologically. We compared the intracellular route of an apical plasma membrane protein, B10, with that of polymeric IgA (pIgA), which is transcytosed, transferrin (Tf) which is recycled, and asialoorosomucoid (ASOR) which is delivered to lysosomes. Ligands and anti-B10 monoclonal IgG were linked to fluorochromes or with peroxidase. The fate of each ligand was followed by confocal and electron microscopy in polarized primary monolayers of rat hepatocytes. When fluorescent anti-B10 IgG and fluorescent pIgA were simultaneously endocytosed for 15–30 minutes, they both uniformly labelled a juxtanuclear compartment. By 30–60 minutes, they reached the bile canaliculi. Tf and ASOR were also routed to the juxtanuclear area, but their fluorescence patterns were more punctate. Microtubule disruption prevented all ligands from reaching the juxtanuclear area. This area corresponded, at least partially, to the localization of the mannose 6-phosphate receptor, an endosomal marker. By electron microscopy, the juxtanuclear compartment was made up of anastomosing tubules connected to vacuoles, and was organized around the centrioles. B10 and pIgA were mainly found in the tubules, whereas ASOR was segregated inside the vacuolar elements and Tf within thinner, recycling tubules. In conclusion, transcytosis of the apical membrane protein B10 occurs inside tubules similar to those carrying pIgA, and involves passage via the pericentriolar area. In the pericentriolar area, the transcytotic tubules appear to maintain connections with other endosomal elements where sorting between recycled and degraded ligands occurs.



mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Ursula Goodenough ◽  
Robyn Roth ◽  
Thamali Kariyawasam ◽  
Amelia He ◽  
Jae-Hyeok Lee

ABSTRACTAnimals and amoebae assemble actin/spectrin-based plasma membrane skeletons, forming what is often called the cell cortex, whereas euglenids and alveolates (ciliates, dinoflagellates, and apicomplexans) have been shown to assemble a thin, viscoelastic, actin/spectrin-free membrane skeleton, here called the epiplast. Epiplasts include a class of proteins, here called the epiplastins, with a head/medial/tail domain organization, whose medial domains have been characterized in previous studies by their low-complexity amino acid composition. We have identified two additional features of the medial domains: a strong enrichment of acid/base amino acid dyads and a predicted β-strand/random coil secondary structure. These features have served to identify members in two additional unicellular eukaryotic radiations—the glaucophytes and cryptophytes—as well as additional members in the alveolates and euglenids. We have analyzed the amino acid composition and domain structure of 219 epiplastin sequences and have used quick-freeze deep-etch electron microscopy to visualize the epiplasts of glaucophytes and cryptophytes. We define epiplastins as proteins encoded in organisms that assemble epiplasts, but epiplastin-like proteins, of unknown function, are also encoded in Insecta, Basidiomycetes, andCaulobactergenomes. We discuss the diverse cellular traits that are supported by epiplasts and propose evolutionary scenarios that are consonant with their distribution in extant eukaryotes.IMPORTANCEMembrane skeletons associate with the inner surface of the plasma membrane to provide support for the fragile lipid bilayer and an elastic framework for the cell itself. Several radiations, including animals, organize such skeletons using actin/spectrin proteins, but four major radiations of eukaryotic unicellular organisms, including disease-causing parasites such asPlasmodium, have been known to construct an alternative and essential skeleton (the epiplast) using a class of proteins that we term epiplastins. We have identified epiplastins in two additional radiations and present images of their epiplasts using electron microscopy. We analyze the sequences and secondary structure of 219 epiplastins and present an in-depth overview and analysis of their known and posited roles in cellular organization and parasite infection. An understanding of epiplast assembly may suggest therapeutic approaches to combat infectious agents such asPlasmodiumas well as approaches to the engineering of useful viscoelastic biofilms.



1981 ◽  
Vol 59 (5) ◽  
pp. 908-928 ◽  
Author(s):  
Martha J. Powell ◽  
Charles E. Bracker ◽  
David J. Sternshein

The cytological events involved in the transformation of vegetative hyphae of the zygomycete Gilbertella persicaria (Eddy) Hesseltine into chlamydospores were studied with light and electron microscopy. Thirty hours after sporangiospores were inoculated into YPG broth, swellings appeared along the aseptate hyphae. Later, septa, traversed by plasmodesmata, delimited each end of the hyphal swellings and compartmentalized these hyphal regions as they differentiated into chlamydospores. Nonswollen regions adjacent to chlamydospores remained as isthmuses. Two additional wall layers appeared within the vegetative wall of the developing chlamydospores. An alveolate, electron-dense wall formed first, and then an electron-transparent layer containing concentrically oriented fibers formed between this layer and the plasma membrane. Rather than a mere condensation of cytoplasm, development and maturation of the multinucleate chlamydospores involved extensive cytoplasmic changes such as an increase in reserve products, lipid and glycogen, an increase and then disappearance of vacuoles, and the breakdown of many mitochondria. Underlying the plasma membrane during chlamydospore wall formation were endoplasmic reticulum, multivesicular bodies, vesicles with fibrillar contents, vesicles with electron-transparent contents, and cisternal rings containing the Golgi apparatus marker enzyme, thiamine pyrophosphatase. Acid phosphatase activity was localized cytochemically in a cisterna which enclosed mitochondria and in vacuoles which contained membrane fragments. Tightly packed membrane whorls and single membrane bounded sacs with finely granular matrices surrounding vacuoles were unique during chlamydospore development. Microbodies were rare in the mature chlamydospore, but endoplasmic reticulum was closely associated with lipid globules. As chlamydospores developed, the cytoplasm in the isthmus became highly vacuolated, lipid globules were closely associated with vacuoles, mitochondria were broken down in vacuoles, unusual membrane configurations appeared, and eventually the membranes degenerated. Unlike chlamydospores, walls of the isthmus did not thicken, but irregularly shaped appositions containing numerous channels formed at intervals on the inside of these walls. The pattern of cytoplasmic transformations during chlamydospore development is similar to events leading to the formation of zygospores and sporangiospores.



1982 ◽  
Vol 94 (3) ◽  
pp. 613-623 ◽  
Author(s):  
J Aggeler ◽  
Z Werb

The initial events during phagocytosis of latex beads by mouse peritoneal macrophages were visualized by high-resolution electron microscopy of platinum replicas of freeze-dried cells and by conventional thin-section electron microscopy of macrophages postfixed with 1% tannic acid. On the external surface of phagocytosing macrophages, all stages of particle uptake were seen, from early attachment to complete engulfment. Wherever the plasma membrane approached the bead surface, there was a 20-nm-wide gap bridged by narrow strands of material 12.4 nm in diameter. These strands were also seen in thin sections and in replicas of critical-point-dried and freeze-fractured macrophages. When cells were broken open and the plasma membrane was viewed from the inside, many nascent phagosomes had relatively smooth cytoplasmic surfaces with few associated cytoskeletal filaments. However, up to one-half of the phagosomes that were still close to the cell surface after a short phagocytic pulse (2-5 min) had large flat or spherical areas of clathrin basketwork on their membranes, and both smooth and clathrin-coated vesicles were seen fusing with or budding off from them. Clathrin-coated pits and vesicles were also abundant elsewhere on the plasma membranes of phagocytosing and control macrophages, but large flat clathrin patches similar to those on nascent phagosomes were observed only on the attached basal plasma membrane surfaces. These resulted suggest that phagocytosis shares features not only with cell attachment and spreading but also with receptor-mediated pinocytosis.



Sign in / Sign up

Export Citation Format

Share Document