scholarly journals Association of adenosine deaminase with erythrocyte and platelet plasma membrane: an immunological study using light and electron microscopy.

1990 ◽  
Vol 38 (5) ◽  
pp. 653-658 ◽  
Author(s):  
R Franco ◽  
J M Aran ◽  
D Colomer ◽  
E Matutes ◽  
J L Vives-Corrons
1991 ◽  
Vol 39 (8) ◽  
pp. 1001-1008 ◽  
Author(s):  
J M Aran ◽  
D Colomer ◽  
E Matutes ◽  
J L Vives-Corrons ◽  
R Franco

Adenosine deaminase, which is essential for lymphoid differentiation and function, has previously been considered to be a cytosolic enzyme. In this report we demonstrate that it can be found associated with the plasma membrane of lymphocytes. By means of immunological techniques using both light and electron microscopy, adenosine deaminase was localized on the external side of the plasma membrane of normal lymphocytes and monocytes. Since the enzyme expression differed depending on the type of cell examined, new hypotheses about the mechanisms involving purine metabolism in immune dysfunctions or immunodeficiency syndromes may be considered.


1981 ◽  
Vol 59 (5) ◽  
pp. 908-928 ◽  
Author(s):  
Martha J. Powell ◽  
Charles E. Bracker ◽  
David J. Sternshein

The cytological events involved in the transformation of vegetative hyphae of the zygomycete Gilbertella persicaria (Eddy) Hesseltine into chlamydospores were studied with light and electron microscopy. Thirty hours after sporangiospores were inoculated into YPG broth, swellings appeared along the aseptate hyphae. Later, septa, traversed by plasmodesmata, delimited each end of the hyphal swellings and compartmentalized these hyphal regions as they differentiated into chlamydospores. Nonswollen regions adjacent to chlamydospores remained as isthmuses. Two additional wall layers appeared within the vegetative wall of the developing chlamydospores. An alveolate, electron-dense wall formed first, and then an electron-transparent layer containing concentrically oriented fibers formed between this layer and the plasma membrane. Rather than a mere condensation of cytoplasm, development and maturation of the multinucleate chlamydospores involved extensive cytoplasmic changes such as an increase in reserve products, lipid and glycogen, an increase and then disappearance of vacuoles, and the breakdown of many mitochondria. Underlying the plasma membrane during chlamydospore wall formation were endoplasmic reticulum, multivesicular bodies, vesicles with fibrillar contents, vesicles with electron-transparent contents, and cisternal rings containing the Golgi apparatus marker enzyme, thiamine pyrophosphatase. Acid phosphatase activity was localized cytochemically in a cisterna which enclosed mitochondria and in vacuoles which contained membrane fragments. Tightly packed membrane whorls and single membrane bounded sacs with finely granular matrices surrounding vacuoles were unique during chlamydospore development. Microbodies were rare in the mature chlamydospore, but endoplasmic reticulum was closely associated with lipid globules. As chlamydospores developed, the cytoplasm in the isthmus became highly vacuolated, lipid globules were closely associated with vacuoles, mitochondria were broken down in vacuoles, unusual membrane configurations appeared, and eventually the membranes degenerated. Unlike chlamydospores, walls of the isthmus did not thicken, but irregularly shaped appositions containing numerous channels formed at intervals on the inside of these walls. The pattern of cytoplasmic transformations during chlamydospore development is similar to events leading to the formation of zygospores and sporangiospores.


1979 ◽  
Vol 83 (2) ◽  
pp. 338-347 ◽  
Author(s):  
M Büechi ◽  
T Bächi

A method was developed for directly observing the inner surfaces of plasma membranes by light and electron microscopy. Human erythrocytes were attached to cover slips (glass or mica) treated with aminopropylsilane and glutaraldehyde, and then disrupted by direct application of a jet of buffer, which removed the distal portion of the cells, thus exposing the cytoplasmic surface (PS) of the flattened membranes. Antispectrin antibodies and Sendai virus particles were employed as sensitive markers for, respectively, the PS and the external surface (ES) of the membrane; their localization by immunofluorescence or electron microscopy demonstrated that the major asymmetrical features of the plasma membrane were preserved. The fusion of Sendai virus particles with cells was investigated using double-labeling immunofluorescence techniques. Virus adsorbed to the ES of cells at 4 degrees C was not accessible to fluorescein-labeled antibodies applied from the PS side. After incubation at 37 degrees C, viral antigens could be detected at the PS. These antigens, however, remained localized and did not diffuse from the site of attachment, as is usually seen in viral antigens accessible on the ES. They may therefore represent internal viral antigens not incorporated into the plasma membrane as a result of virus-cell fusion.


1990 ◽  
Vol 68 (7) ◽  
pp. 1454-1467 ◽  
Author(s):  
K. M. Fry ◽  
S. B. McIver

Light and electron microscopy were used to observe development of the lateral palatal brush in Aedes aegypti (L.) larvae. Development was sampled at 4-h intervals from second- to third-instar ecdyses. Immediately after second-instar ecdysis, the epidermis apolyses from newly deposited cuticle in the lateral palatal pennicular area to form an extensive extracellular cavity into which the fourth-instar lateral palatal brush filaments grow as cytoplasmic extensions. On reaching their final length, the filaments deposit cuticulin, inner epicuticle, and procuticle sequentially on their outer surfaces. The lateral palatal crossbars, on which the lateral palatal brush filaments insert, form after filament development is complete. At the beginning of development, the organelles involved in plasma membrane and cuticle production are located at the base and middle of the cells. As the filament rudiments grow, most rough endoplasmic reticulum, mitochondria, and Golgi apparatus move to the apex of the epidermal cells and into the filament rudiments. After formation of the lateral palatal brush filaments and lateral palatal crossbars, extensive organelle breakdown occurs. Lateral palatal brush formation is unusual in that no digestion and resorption of old endocuticle occurs prior to deposition of new cuticle. No mucopolysaccharide secretion by the lateral palatal brush epidermis was observed, nor were muscle fibres observed to attach to the lateral palatal crossbars, as has been suggested by other workers.


1991 ◽  
Vol 2 (12) ◽  
pp. 1097-1113 ◽  
Author(s):  
J M Lewis ◽  
M J Woolkalis ◽  
G L Gerton ◽  
R M Smith ◽  
L Jarett ◽  
...  

The subcellular distribution of the alpha subunit(s) of Gi has an obvious bearing on the ability of this protein to interact with receptors and targets and on its potential to serve in still unexplored capacities. In this study, we have examined the distribution of Gi alpha by means of light and electron microscopy. The cells employed were mouse 3T3 fibroblasts, normal rat kidney fibroblasts, rat C6 glioma cells, human umbilical vein endothelial cells, and human 293 kidney fibroblasts. By indirect immunofluorescence, two patterns of Gi alpha were evident. The more prominent was that associated with phase-dense, cytoplasmic structures exhibiting a tubule-like morphology. A similar distribution was noted for mitochondria, indicating attachment to a subset of microtubules. The second pattern appeared as a diffuse, particulate fluorescence associated with the plasma membrane. By immunogold labeling and electron microscopy, two populations of Gi alpha were again evident. In this instance, labeling of the plasma membrane was the more prominent. Gold particles were most often evenly distributed along the plasma membrane and were concentrated along microspikes. The second, less abundant population of Gi alpha represented the subunit (or fragments) within lysosomes. Specificity in immunolabeling was confirmed in all instances by immunotransfer blotting, the use of antibodies differing in specificities for epitopes within Gi alpha, the absence of labeling with preimmune sera, and the decrease in labeling after preincubation of antisera with appropriate peptides. These results support the proposal that several populations of Gi alpha exist: those evident within the cytoplasm by immunofluorescence, those present at the plasma membrane, and those evident within lysosomes by immunogold labeling.


1970 ◽  
Vol 7 (1) ◽  
pp. 12-27 ◽  
Author(s):  
D. F. Kelly

Cutaneous histiocytomas from 4 dogs were examined by light and electron microscopy. A large (up to 10 μ in diameter) mononuclear cell with prominent filiform processes of the plasma membrane predominated. Its cytoplasm contained relatively small amounts of endoplasmic reticulum and mitochondria, only occasional lysosomes, fibrils, most obvious in the perinuclear region, and small amounts of cytoplasmic debris. Acid phosphatase was not detected. Fibroblasts and collagen formed a small part of the lesion, except at the junction with surrounding dermis, where fibers were plentiful. The morphologic features of the lesion are compatible with the suggestion that the predominant cell is of histiocytic type.


1980 ◽  
Vol 87 (2) ◽  
pp. 442-450 ◽  
Author(s):  
W Herth

The influence of the light microscopical stains, Calcofluor white and Congo red, on the process of chitin microfibril formation of the chrysoflagellate alga Poterioochromonas stipitata was studied with light and electron microscopy. There is a concentration-dependent inhibition of lorica formation with both dyes. In the presence of the inhibitors malformed loricae are made, which do not show the usual ultrastructure and arrangement of the chitin microfibrils. Instead of long, laterally associated microfibrils, short rods or irregular networks of subelementary (15-25 A) fibrils are found. Microfibril assembly obviously takes place on the accessible outside of the plasma membrane. There must be a gap between the polymerization and microfibril formation reactions, allowing the stains to bind to the polymerized subunits. Thus, later association of these units to form microfibrils is disturbed. The microfibril-orienting mechanism also depends on normal microfibril formation. A model summarizing these hypotheses is suggested.


Microbiology ◽  
2000 ◽  
Vol 81 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Marie Kopecká ◽  
M. Gabriel ◽  
O. Nečas

A mixture of nucleated and anucleated protoplasts was produced from log-phase Saccharomyces cerevisiae by the use of snail enzymes. The mixture was separated by centrifugation, and anucleated protoplasts were studied by means of light and electron microscopy. Anucleated protoplasts did not synthesize glucan fibrils even though they seemed to contain all other basic structures in their cytoplasm, and the structure of the plasma membrane was unchanged. This was in sharp contrast to ordinary nucleated protoplasts which synthesized glucan fibrils even after inhibition of protein synthesis by cycloheximide. The reason for this behaviour of anucleated protoplasts is not clear. Such anucleated yeast protoplasts represent the first example of uniform anucleated fungi produced by a reproducible method.


1987 ◽  
Vol 105 (5) ◽  
pp. 2267-2277 ◽  
Author(s):  
M S Eckmiller

Because cone outer segments (COS) are now known to be continually renewed, I reexamined COS morphogenesis in retinas of Xenopus tadpoles (prepared by standard histologic techniques and viewed by light and electron microscopy) to clarify how COS incorporate new membrane. I observed that developing COS underwent an unexpected shape change: they were always conical, but their taper (width divided by length) continually decreased. Ultrastructural examination revealed that many of the membrane foldings within distal COS were partial or incomplete, not extending across the full COS width but ending at variable distances from the ciliary side. Because these partial folds represented infoldings of the plasma membrane of an existing lamella, and they occurred at all COS levels except the base, I have termed them distal invaginations (DI). The completion of each DI increased COS length by one lamella but caused no noticeable change in local COS width; thus the formation of many DI throughout the distal COS presumably resulted in the observed decrease in overall COS taper. Based on these findings, I suggest that DI indicate growing membrane fronts and may represent sites where newly synthesized membrane is incorporated into COS. Because DI occur in developing and adult COS of various vertebrate species, I propose that DI formation plays an important role in the generation of COS taper during development and the remodeling of COS taper in mature cones after tip shedding.


Sign in / Sign up

Export Citation Format

Share Document