Allozyme Characterisation of the Salt Lake Spiders (Lycosa: Lycosidae: Araneae) of Southern Australia: Systematic and Population Genetic Implications.

1996 ◽  
Vol 44 (5) ◽  
pp. 535 ◽  
Author(s):  
P Hudson ◽  
M Adams

Allozyme electrophoresis was used to determine the genetic relationships amongst various populations of Lycosa alteripa, L. eyrei and L. salifodina, the three described species of wolf spider endemic to the normally dry salt lakes of southern Australia. A total of 185 individuals from 38 sites was analysed for allozyme variation at 31-35 loci. The results demonstrate the presence of two additional species of salt lake spider, one related to L. alteripa and the other related to L. eyrei. Limited population genetic analysis of the data indicates that population substructuring is common within most species, often to the finest level of geographic sampling. The data indicate that gene flow is limited in these species and reveal three instances of a similar macro-geographic pattern being displayed amongst subpopulations or taxa in central South Australia. Estimates of genetic divergence between the five taxa have also been used to provide a 'first-guess' estimate of the times of divergence for the major cladogenic events within this lineage.

1999 ◽  
Vol 50 (1) ◽  
pp. 15 ◽  
Author(s):  
Simon R. Bryars ◽  
Mark Adams

Allozyme analysis was used to examine the species-level systematics and stock structure of the Australian blue swimmer crab Portunus pelagicus. Fifty-seven crabs from eight sites were screened in an overview study for allozyme variation at 35 loci. This overview study revealed the presence of two species, differing at a Nei D of 0.14 (2% fixed differences), in the Darwin region of northern Australia. One of these species corresponds to the common P. pelagicus found throughout Australia, whereas the other is most likely either an undescribed ‘cryptic’ species, or the east-Asian species P. trituberculatus. In total, 609 P. pelagicus from 11 sites covering three regions in South Australia and two regions in the Northern Territory were then genotyped at seven polymorphic loci and these data assessed, using goodness- of-fit and F-statistics, for the existence of subpopulations. Four discrete subpopulations could be discerned, namely West Coast, Spencer Gulf, and Gulf St Vincent in South Australia, and Darwin–Gove in the Northern Territory. No evidence of population substructuring among sites within each subpopulation was evident from the allozyme data. The results support the current recognition of the three South Australian regions as separate stocks, and suggest that a taxonomic revision of Indo-Pacific Portunus is warranted.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1297
Author(s):  
Peng Shang ◽  
Wenting Li ◽  
Zhankun Tan ◽  
Jian Zhang ◽  
Shixiong Dong ◽  
...  

Several geographically isolated populations of Tibetan pigs inhabit the high-altitude environment of the Tibetan Plateau. Their genetic relationships, contribution to the pool of genetic diversity, and their origin of domestication are unclear. In this study, whole-genome re-sequencing data from 10 geographically isolated Tibetan pig populations were collected and analyzed. Population genetic analyses revealed limited genetic differentiation among the Tibetan pig populations. Evidence from deleterious variant analysis indicated that population-specific deleterious variants were the major component of all mutational loci. Contribution to the meta-population was largest in the TT (Qinghai-Tibet Plateau) population, based on gene diversity or allelic diversity. Selective sweep analysis revealed numerous genes, including RXFP1, FZD1, OR1F1, TBX19, MSTN, ESR1, MC1R, HIF3A, and EGLN2 which are involved in lung development, hard palate development, coat color, hormone metabolism, facial appearance, and perception of smell. These findings increase our understanding of the origins and domestication of the Tibetan pig, and help optimize the strategy for their conservation.


2011 ◽  
Vol 4 (2) ◽  
pp. 115-119 ◽  
Author(s):  
Ross D. MacCulloch ◽  
Ilya S. Darevsky ◽  
Robert W. Murphy ◽  
Jinzhong Fu

Genetic diversity at 35 allozyme loci was surveyed in Lacerta derjugini (3 populations) and L. praticola (2 populations). Indices of variability were consistent with those found in other Caucasian Lacerta. There was little genetic substructuring between two populations of L. praticola despite considerable geographic separation. Conversely, populations of L. derjugini in close proximity to one another exhibited considerable substructuring.


1995 ◽  
Vol 85 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Philippe Borsa ◽  
D. Pierre Gingerich

AbstractSeven presumed Mendelian enzyme loci (Est-2, Est-3, Gpi, Idh-l, Idh-2, Mdh-2 and Mpi) were characterized and tested for polymorphism in coffee berry borers, Hypothenemus hampei (Ferrari), sampled in Côte d′Ivoire, Mexico and New Caledonia. The average genetic diversity was H = 0.080. Two loci, Mdh-2 and Mpi were polymorphic, and thus usable as genetic markers. The population structure of H. hampei was analysed using Weir & Cockerham's estimators of Wright's F-statistics. A high degree of inbreeding (f = 0.298) characterized the elementary geographic sampling unit, the coffee field. The estimate of gene flow between fields within a country was Nm = 10.6 and that between countries was Nm = 2. The population genetic structure in H. hampei could be related to its known population biological features and history.


Genetics ◽  
2000 ◽  
Vol 154 (3) ◽  
pp. 1231-1238 ◽  
Author(s):  
David J Begun ◽  
Penn Whitley

Abstract NF-κB and IκB proteins have central roles in regulation of inflammation and innate immunity in mammals. Homologues of these proteins also play an important role in regulation of the Drosophila immune response. Here we present a molecular population genetic analysis of Relish, a Drosophila NF-κB/IκB protein, in Drosophila simulans and D. melanogaster. We find strong evidence for adaptive protein evolution in D. simulans, but not in D. melanogaster. The adaptive evolution appears to be restricted to the IκB domain. A possible explanation for these results is that Relish is a site of evolutionary conflict between flies and their microbial pathogens.


2000 ◽  
Vol 161 (3) ◽  
pp. 413-423 ◽  
Author(s):  
Hyun‐Woo Lee ◽  
Myong Gi Chung ◽  
Youngbae Suh ◽  
Chong‐Wook Park

2012 ◽  
Vol 42 (3) ◽  
pp. 287-293 ◽  
Author(s):  
Wei Li ◽  
Vitaliano Cama ◽  
Yaoyu Feng ◽  
Robert H. Gilman ◽  
Caryn Bern ◽  
...  

2011 ◽  
Vol 59 (1) ◽  
pp. 206-224 ◽  
Author(s):  
Dorothy A. Steane ◽  
Dean Nicolle ◽  
Carolina P. Sansaloni ◽  
César D. Petroli ◽  
Jason Carling ◽  
...  

Botany ◽  
2010 ◽  
Vol 88 (7) ◽  
pp. 639-667 ◽  
Author(s):  
Gary W. Saunders ◽  
Brian McDonald

The DNA barcode (COI-5P) was used to investigate cryptic diversity among Rhodymenia spp. in southern Australia. Whereas eight species are currently recognized, we uncovered ca. 20 genetic species groups, phylogenetically assigned to four genera in two families. Procumbent specimens with molecular and anatomical signatures of the Fryeellaceae are assigned to Pseudohalopeltis tasmanensis gen. et sp. nov. Collections from Lord Howe Island recorded in the field as Rhodymenia / Fauchea sp. are assigned to the poorly known genus Microphyllum as Microphyllum robustum sp. nov. A cluster of species with distinct molecular and anatomical attributes is included in a resurrected Halopeltis J.G. Agardh, including Halopeltis australis (J. Agardh) comb. nov. (type species); Halopeltis austrina (Womersley) comb. nov.; Halopeltis cuneata (Harvey) comb. nov. [including Rhodymenia halymenioides (J. Agardh) Womersley]; Halopeltis gracilis sp. nov.; Halopeltis prostrata sp. nov.; and Halopeltis verrucosa (Womersley) comb. nov. Four additional species of Halopeltis from Lord Howe Island (LH1, LH2), Tasmania (TAS), and Western Australia are not characterized further. For Rhodymenia sensu stricto, similar levels of cryptic diversity were noted. Samples tentatively field-identified as “ Rhodymenia sonderi ,” but having affiliations to Rhodymenia rather than Halopeltis, are referred to Rhodymenia novahollandica sp. nov. Collections field-identified as R. obtusa are genetically distinct from that species and are assigned to Rhodymenia wilsonis (Sonder) comb. nov. Two highly divergent species currently identified as Rhodymenia leptophylla (LH from Lord Howe Island; TAS from Tasmania), as well as two additional cryptic previously unnamed taxa from South Australia (SA) and Victoria (VIC), are not characterized further.


Sign in / Sign up

Export Citation Format

Share Document