scholarly journals mRNA maturation by two-step trans-splicing/polyadenylation processing in trypanosomes

2007 ◽  
Vol 104 (7) ◽  
pp. 2035-2042 ◽  
Author(s):  
A. V. Jager ◽  
J. G. De Gaudenzi ◽  
A. Cassola ◽  
I. D'Orso ◽  
A. C. Frasch
Author(s):  
Yi Zhang ◽  
Lian Liu ◽  
Qiongzi Qiu ◽  
Qing Zhou ◽  
Jinwang Ding ◽  
...  

AbstractOccurring in over 60% of human genes, alternative polyadenylation (APA) results in numerous transcripts with differing 3’ends, thus greatly expanding the diversity of mRNAs and of proteins derived from a single gene. As a key molecular mechanism, APA is involved in various gene regulation steps including mRNA maturation, mRNA stability, cellular RNA decay, and protein diversification. APA is frequently dysregulated in cancers leading to changes in oncogenes and tumor suppressor gene expressions. Recent studies have revealed various APA regulatory mechanisms that promote the development and progression of a number of human diseases, including cancer. Here, we provide an overview of four types of APA and their impacts on gene regulation. We focus particularly on the interaction of APA with microRNAs, RNA binding proteins and other related factors, the core pre-mRNA 3’end processing complex, and 3’UTR length change. We also describe next-generation sequencing methods and computational tools for use in poly(A) signal detection and APA repositories and databases. Finally, we summarize the current understanding of APA in cancer and provide our vision for future APA related research.


1988 ◽  
Vol 8 (6) ◽  
pp. 2361-2366 ◽  
Author(s):  
K A Jarrell ◽  
R C Dietrich ◽  
P S Perlman

A self-splicing group II intron of yeast mitochondrial DNA (aI5g) was divided within intron domain 4 to yield two RNAs that trans-spliced in vitro with associated trans-branching of excised intron fragments. Reformation of the domain 4 secondary structure was not necessary for the trans reaction, since domain 4 sequences were shown to be dispensable. Instead, the trans reaction depended on a previously unpredicted interaction between intron domain 5, the most highly conserved region of group II introns, and another region of the RNA. Domain 5 was shown to be essential for cleavage at the 5' splice site. It stimulated that cleavage when supplied as a trans-acting RNA containing only 42 nucleotides of intron sequence. The relevance of our findings to in vivo trans-splicing mechanisms is discussed.


2021 ◽  
Author(s):  
Debayan Sarkar ◽  
Hendrik Harms ◽  
Iacopo Galleano ◽  
Zeshan Pervez Sheikh ◽  
Stephan Alexander Pless

Genetics ◽  
2003 ◽  
Vol 164 (3) ◽  
pp. 895-907 ◽  
Author(s):  
Kevin Vincent ◽  
Qiang Wang ◽  
Steven Jay ◽  
Kathryn Hobbs ◽  
Brian C Rymond

AbstractClf1 is a conserved spliceosome assembly factor composed predominately of TPR repeats. Here we show that the TPR elements are not functionally equivalent, with the amino terminus of Clf1 being especially sensitive to change. Deletion and add-back experiments reveal that the splicing defect associated with TPR removal results from the loss of TPR-specific sequence information. Twelve mutants were found that show synthetic growth defects when combined with an allele that lacks TPR2 (i.e., clf1Δ2). The identified genes encode the Mud2, Ntc20, Prp16, Prp17, Prp19, Prp22, and Syf2 splicing factors and four proteins without established contribution to splicing (Bud13, Cet1, Cwc2, and Rds3). Each synthetic lethal with clf1Δ2 (slc) mutant is splicing defective in a wild-type CLF1 background. In addition to the splicing factors, SSD1, BTS1, and BET4 were identified as dosage suppressors of clf1Δ2 or selected slc mutants. These results support Clf1 function through multiple stages of the spliceosome cycle, identify additional genes that promote cellular mRNA maturation, and reveal a link between Rab/Ras GTPase activation and the process of pre-mRNA splicing.


Sign in / Sign up

Export Citation Format

Share Document