scholarly journals Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley

2008 ◽  
Vol 105 (51) ◽  
pp. 20534-20539 ◽  
Author(s):  
M. A. Held ◽  
B. Penning ◽  
A. S. Brandt ◽  
S. A. Kessans ◽  
W. Yong ◽  
...  
2011 ◽  
Vol 5 (S7) ◽  
Author(s):  
Nicky Creux ◽  
Minique De Castro ◽  
Martin Ranik ◽  
Antanas Spokevicius ◽  
Gerd Bossinger ◽  
...  

2019 ◽  
Vol 60 (7) ◽  
pp. 1487-1503 ◽  
Author(s):  
Thiel A. Lehman ◽  
Karen A Sanguinet

AbstractPlant cells sheath themselves in a complex lattice of polysaccharides, proteins and enzymes forming an integral matrix known as the cell wall. Cellulose microfibrils, the primary component of cell walls, are synthesized at the plasma membrane by CELLULOSE SYNTHASE A (CESA) proteins throughout cellular growth and are responsible for turgor-driven anisotropic expansion. Associations between hormone signaling and cell wall biosynthesis have long been suggested, but recently direct links have been found revealing hormones play key regulatory roles in cellulose biosynthesis. The radially swollen 1 (rsw1) allele of Arabidopsis thaliana CESA1 harbors a single amino acid change that renders the protein unstable at high temperatures. We used the conditional nature of rsw1 to investigate how auxin contributes to isotropic growth. We found that exogenous auxin treatment reduces isotropic swelling in rsw1 roots at the restrictive temperature of 30�C. We also discovered decreases in auxin influx between rsw1 and wild-type roots via confocal imaging of AUX1-YFP, even at the permissive temperature of 19�C. Moreover, rsw1 displayed mis-expression of auxin-responsive and CESA genes. Additionally, we found altered auxin maxima in rsw1 mutant roots at the onset of swelling using DII-VENUS and DR5:vYFP auxin reporters. Overall, we conclude disrupted cell wall biosynthesis perturbs auxin transport leading to altered auxin homeostasis impacting both anisotropic and isotropic growth that affects overall root morphology.


2018 ◽  
Vol 177 (3) ◽  
pp. 1124-1141 ◽  
Author(s):  
Alan Little ◽  
Julian G. Schwerdt ◽  
Neil J. Shirley ◽  
Shi F. Khor ◽  
Kylie Neumann ◽  
...  

2009 ◽  
Vol 60 (6) ◽  
pp. 1055-1069 ◽  
Author(s):  
Ming Li ◽  
Guangyan Xiong ◽  
Rui Li ◽  
Jiajun Cui ◽  
Ding Tang ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kapil Gupta ◽  
Shubhra Gupta ◽  
Adi Faigenboim-Doron ◽  
Abhinandan Surgonda Patil ◽  
Yael Levy ◽  
...  

Abstract Background Peanut (Arachis hypogaea L.) belongs to an exceptional group of legume plants, wherein the flowers are produced aerially, but the pods develop under the ground. In such a unique environment, the pod’s outer shell plays a vital role as a barrier against mechanical damage and soilborne pathogens. Recent studies have reported the uniqueness and importance of gene expression patterns that accompany peanut pods’ biogenesis. These studies focused on biogenesis and pod development during the early stages, but the late developmental stages and disease resistance aspects still have gaps. To extend this information, we analyzed the transcriptome generated from four pod developmental stages of two genotypes, Hanoch (Virginia-type) and IGC53 (Peruvian-type), which differs significantly in their pod shell characteristics and pathogen resistance. Results The transcriptome study revealed a significant reprogramming of the number and nature of differentially expressed (DE) genes during shell development. Generally, the numbers of DE genes were higher in IGC53 than in Hanoch, and the R5-R6 transition was the most dynamic in terms of transcriptomic changes. Genes related to cell wall biosynthesis, modification and transcription factors (TFs) dominated these changes therefore, we focused on their differential, temporal and spatial expression patterns. Analysis of the cellulose synthase superfamily identified specific Cellulose synthase (CesAs) and Cellulose synthase-like (Csl) genes and their coordinated interplay with other cell wall-related genes during the peanut shell development was demonstrated. TFs were also identified as being involved in the shell development process, and their pattern of expression differed in the two peanut genotypes. The shell component analysis showed that overall crude fiber, cellulose, lignin, hemicelluloses and dry matter increased with shell development, whereas K, N, protein, and ash content decreased. Genotype IGC53 contained a higher level of crude fiber, cellulose, NDF, ADF, K, ash, and dry matter percentage, while Hanoch had higher protein and nitrogen content. Conclusions The comparative transcriptome analysis identified differentially expressed genes, enriched processes, and molecular processes like cell wall biosynthesis/modifications, carbohydrate metabolic process, signaling, transcription factors, transport, stress, and lignin biosynthesis during the peanut shell development between two contrasting genotypes. TFs and other genes like chitinases were also enriched in peanut shells known for pathogen resistance against soilborne major pathogens causing pod wart disease and pod damages. This study will shed new light on the biological processes involved with underground pod development in an important legume crop.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guilherme Kenichi Hosaka ◽  
Fernando Henrique Correr ◽  
Carla Cristina da Silva ◽  
Danilo Augusto Sforça ◽  
Fernanda Zatti Barreto ◽  
...  

Multiple genes in sugarcane control sucrose accumulation and the biosynthesis of cell wall components; however, it is unclear how these genes are expressed in its apical culms. To better understand this process, we sequenced mRNA from +1 stem internodes collected from four genotypes with different concentrations of soluble solids. Culms were collected at four different time points, ranging from six to 12-month-old plants. Here we show differentially expressed genes related to sucrose metabolism and cell wall biosynthesis, including genes encoding invertases, sucrose synthase and cellulose synthase. Our results showed increased expression of invertases in IN84-58, the genotype with lower sugar and higher fiber content, as well as delayed expression of secondary cell wall-related cellulose synthase for the other genotypes. Interestingly, genes involved with hormone metabolism were differentially expressed across time points in the three genotypes with higher soluble solids content. A similar result was observed for genes controlling maturation and transition to reproductive stages, possibly a result of selection against flowering in sugarcane breeding programs. These results indicate that carbon partitioning in apical culms of contrasting genotypes is mainly associated with differential cell wall biosynthesis, and may include early modifications for subsequent sucrose accumulation. Co-expression network analysis identified transcription factors related to growth and development, showing a probable time shift for carbon partitioning occurred in 10-month-old plants.


Sign in / Sign up

Export Citation Format

Share Document