scholarly journals Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach

2012 ◽  
Vol 109 (5) ◽  
pp. 1380-1387 ◽  
Author(s):  
K. Lasker ◽  
F. Forster ◽  
S. Bohn ◽  
T. Walzthoeni ◽  
E. Villa ◽  
...  
2019 ◽  
Author(s):  
Pascal Lill ◽  
Tobias Hansen ◽  
Daniel Wendscheck ◽  
Bjoern Udo Klink ◽  
Tomasz Jeziorek ◽  
...  

AbstractImport of yeast peroxisomal matrix proteins is initiated by cytosolic receptors, which specifically recognize and bind the respective cargo proteins. At the peroxisomal membrane, the cargo-loaded receptor interacts with the docking protein Pex14p that is tightly associated with Pex17p. Previous data suggest that this interaction triggers the formation of an import pore for further translocation of the cargo. The mechanistic principles are however unclear, mainly because structures of higher order assemblies are still lacking. Here, using an integrative approach, we provide the first structural characterization of the major components of the peroxisomal docking complex Pex14p/Pex17p, in a native bilayer environment and reveal its subunit organization. Our data show that three copies of Pex14p and a single copy of Pex17p assemble to form a 20 nm rod-like particle. The different subunits are arranged in a parallel manner, showing interactions along their complete sequences and providing receptor binding-sites on both membrane sides. The long rod facing the cytosol is mainly formed by the predicted coiled-coil domains of Pex14p and Pex17p, possibly providing the necessary structural support for the formation of the import pore. Further implications of Pex14p/Pex17p for formation of the peroxisomal translocon are discussed.


2021 ◽  
Author(s):  
Weria Pezeshkian ◽  
Fabian Grünewald ◽  
Oleksandr Narykov ◽  
Senbao Lu ◽  
Tsjerk A Wassenaar ◽  
...  

AbstractDespite tremendous efforts by research community during the COVID-19 pandemic, the exact structure of SARS-CoV-2 and related betacoronaviruses remains elusive. Here, we developed and applied an integrative multi-scale computational approach to model the envelope structure of SARS-CoV-2, focusing on studying the dynamic nature and molecular interactions of its most abundant, but largely understudied, M (membrane) protein. The molecular dynamics simulations allowed us to test the envelop stability under different configurations and revealed that M dimers agglomerated into large, filament-like, macromolecular assemblies with distinct molecular patterns formed by M’s transmembrane and intra-virion (endo) domains. These results were in agreement with the experimental data, demonstrating a generic and versatile integrative approach to model the structure of a virus de novo, providing insights into critical roles of structural proteins in the viral assembly and integration, and proposing new targets for the antiviral therapies.


2009 ◽  
Vol 106 (29) ◽  
pp. 11943-11947 ◽  
Author(s):  
S. Nickell ◽  
F. Beck ◽  
S. H. W. Scheres ◽  
A. Korinek ◽  
F. Forster ◽  
...  

2020 ◽  
Vol 117 (52) ◽  
pp. 33216-33224
Author(s):  
Pascal Lill ◽  
Tobias Hansen ◽  
Daniel Wendscheck ◽  
Bjoern Udo Klink ◽  
Tomasz Jeziorek ◽  
...  

Import of yeast peroxisomal matrix proteins is initiated by cytosolic receptors, which specifically recognize and bind the respective cargo proteins. At the peroxisomal membrane, the cargo-loaded receptor interacts with the docking protein Pex14p that is tightly associated with Pex17p. Previous data suggest that this interaction triggers the formation of an import pore for further translocation of the cargo. The mechanistic principles, however, are unclear, mainly because structures of higher-order assemblies are still lacking. Here, using an integrative approach, we provide the structural characterization of the major components of the peroxisomal docking complex Pex14p/Pex17p, in a native bilayer environment, and reveal its subunit organization. Our data show that three copies of Pex14p and a single copy of Pex17p assemble to form a 20-nm rod-like particle. The different subunits are arranged in a parallel manner, showing interactions along their complete sequences and providing receptor binding sites on both membrane sides. The long rod facing the cytosol is mainly formed by the predicted coiled-coil domains of Pex14p and Pex17p, possibly providing the necessary structural support for the formation of the import pore. Further implications of Pex14p/Pex17p for formation of the peroxisomal translocon are discussed.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


Author(s):  
Béatrice Satiat-Jeunemaitre ◽  
Chris Hawes

The comprehension of the molecular architecture of plant cell walls is one of the best examples in cell biology which illustrates how developments in microscopy have extended the frontiers of a topic. Indeed from the first electron microscope observation of cell walls it has become apparent that our understanding of wall structure has advanced hand in hand with improvements in the technology of specimen preparation for electron microscopy. Cell walls are sub-cellular compartments outside the peripheral plasma membrane, the construction of which depends on a complex cellular biosynthetic and secretory activity (1). They are composed of interwoven polymers, synthesised independently, which together perform a number of varied functions. Biochemical studies have provided us with much data on the varied molecular composition of plant cell walls. However, the detailed intermolecular relationships and the three dimensional arrangement of the polymers in situ remains a mystery. The difficulty in establishing a general molecular model for plant cell walls is also complicated by the vast diversity in wall composition among plant species.


Author(s):  
Nobutaka Hirokawa

In this symposium I will present our studies about the molecular architecture and function of the cytomatrix of the nerve cells. The nerve cell is a highly polarized cell composed of highly branched dendrites, cell body, and a single long axon along the direction of the impulse propagation. Each part of the neuron takes characteristic shapes for which the cytoskeleton provides the framework. The neuronal cytoskeletons play important roles on neuronal morphogenesis, organelle transport and the synaptic transmission. In the axon neurofilaments (NF) form dense arrays, while microtubules (MT) are arranged as small clusters among the NFs. On the other hand, MTs are distributed uniformly, whereas NFs tend to run solitarily or form small fascicles in the dendrites Quick freeze deep etch electron microscopy revealed various kinds of strands among MTs, NFs and membranous organelles (MO). These structures form major elements of the cytomatrix in the neuron. To investigate molecular nature and function of these filaments first we studied molecular structures of microtubule associated proteins (MAP1A, MAP1B, MAP2, MAP2C and tau), and microtubules reconstituted from MAPs and tubulin in vitro. These MAPs were all fibrous molecules with different length and formed arm like projections from the microtubule surface.


Author(s):  
G. Lembcke ◽  
F. Zemlin

The thermoacidophilic archaebacterium Sulfolobus spec. B12 , which is closely related to Sulfolobus solfataricus , possesses a regularly arrayed surface protein (S-layer), which is linked to the plasma membrane via spacer elements spanning a distinct interspace of approximately 18 nm. The S-layer has p3-Symmetry and a lattice constant of 21 nm; three-dimensional reconstructions of negatively stained fragments yield a layer thickness of approximately 6-7 nm.For analysing the molecular architecture of Sulfolobus surface protein in greater detail we use aurothioglucose(ATG)-embedding for specimen preparation. Like glucose, ATG, is supposed to mimic the effect of water, but has the advantage of being less volatile. ATG has advantages over glucose when working with specimens composed exclusively of protein because of its higher density of 2.92 g cm-3. Because of its high radiation sensitivity electromicrographs has to be recorded under strict low-dose conditions. We have recorded electromicrographs with a liquid helium-cooled superconducting electron microscope (the socalled SULEIKA at the Fritz-Haber-lnstitut) with a specimen temperature of 4.5 K and with a maximum dose of 2000 e nm-2 avoiding any pre-irradiation of the specimen.


2015 ◽  
Vol 58 ◽  
pp. 83-100 ◽  
Author(s):  
Selena Gimenez-Ibanez ◽  
Marta Boter ◽  
Roberto Solano

Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-l-isoleucine (JA-Ile), is perceived by the COI1–JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.


2020 ◽  
Vol 5 (1) ◽  
pp. 290-303
Author(s):  
P. Charlie Buckley ◽  
Kimberly A. Murza ◽  
Tami Cassel

Purpose The purpose of this study was to explore the perceptions of special education practitioners (i.e., speech-language pathologists, special educators, para-educators, and other related service providers) on their role as communication partners after participation in the Social Communication and Engagement Triad (Buckley et al., 2015 ) yearlong professional learning program. Method A qualitative approach using interviews and purposeful sampling was used. A total of 22 participants who completed participation in either Year 1 or Year 2 of the program were interviewed. Participants were speech-language pathologists, special educators, para-educators, and other related service providers. Using a grounded theory approach (Glaser & Strauss, 1967 ) to data analysis, open, axial, and selective coding procedures were followed. Results Three themes emerged from the data analysis and included engagement as the goal, role as a communication partner, and importance of collaboration. Conclusions Findings supported the notion that educators see the value of an integrative approach to service delivery, supporting students' social communication and engagement across the school day but also recognizing the challenges they face in making this a reality.


Sign in / Sign up

Export Citation Format

Share Document