scholarly journals Mechanical force effect on the two-state equilibrium of the hyaluronan-binding domain of CD44 in cell rolling

2015 ◽  
Vol 112 (22) ◽  
pp. 6991-6996 ◽  
Author(s):  
Takashi Suzuki ◽  
Miho Suzuki ◽  
Shinji Ogino ◽  
Ryo Umemoto ◽  
Noritaka Nishida ◽  
...  

CD44 is the receptor for hyaluronan (HA) and mediates cell rolling under fluid shear stress. The HA-binding domain (HABD) of CD44 interconverts between a low-affinity, ordered (O) state and a high-affinity, partially disordered (PD) state, by the conformational change of the C-terminal region, which is connected to the plasma membrane. To examine the role of tensile force on CD44-mediated rolling, we used a cell-free rolling system, in which recombinant HABDs were attached to beads through a C-terminal or N-terminal tag. We found that the rolling behavior was stabilized only at high shear stress, when the HABD was attached through the C-terminal tag. In contrast, no difference was observed for the beads coated with HABD mutants that constitutively adopt either the O state or the PD state. Steered molecular dynamics simulations suggested that the force from the C terminus disrupts the interaction between the C-terminal region and the core of the domain, thus providing structural insights into how the mechanical force triggers the allosteric O-to-PD transition. Based on these results, we propose that the force applied from the C terminus enhances the HABD–HA interactions by inducing the conformational change to the high-affinity PD transition more rapidly, thereby enabling CD44 to mediate lymphocyte trafficking and hematopoietic progenitor cell homing under high-shear conditions.

1999 ◽  
Vol 19 (10) ◽  
pp. 6729-6741 ◽  
Author(s):  
Kristin Baetz ◽  
Brenda Andrews

ABSTRACTInSaccharomyces cerevisiae, two transcription factors, SBF (SCB binding factor) and MBF (MCB binding factor), promote the induction of gene expression at the G1/S-phase transition of the mitotic cell cycle. Swi4 and Mbp1 are the DNA binding components of SBF and MBF, respectively. The Swi6 protein is a common subunit of both transcription factors and is presumed to play a regulatory role. SBF binding to its target sequences, the SCBs, is a highly regulated event and requires the association of Swi4 with Swi6 through their C-terminal domains. Swi4 binding to SCBs is restricted to the late M and G1phases, when Swi6 is localized to the nucleus. We show that in contrast to Swi6, Swi4 remains nuclear throughout the cell cycle. This finding suggests that the DNA binding domain of Swi4 is inaccessible in the full-length protein when not complexed with Swi6. To explore this hypothesis, we expressed Swi4 and Swi6 in insect cells by using the baculovirus system. We determined that partially purified Swi4 cannot bind SCBs in the absence of Swi6. However, Swi4 derivatives carrying point mutations or alterations in the extreme C terminus were able to bind DNA or activate transcription in the absence of Swi6, and the C terminus of Swi4 inhibited Swi4 derivatives from binding DNA intrans. Full-length Swi4 was determined to be monomeric in solution, suggesting an intramolecular mechanism for auto-inhibition of binding to DNA by Swi4. We detected a direct in vitro interaction between a C-terminal fragment of Swi4 and the N-terminal 197 amino acids of Swi4, which contain the DNA binding domain. Together, our data suggest that intramolecular interactions involving the C-terminal region of Swi4 physically prevent the DNA binding domain from binding SCBs. The interaction of the carboxy-terminal region of Swi4 with Swi6 alleviates this inhibition, allowing Swi4 to bind DNA.


2003 ◽  
Vol 23 (6) ◽  
pp. 1922-1934 ◽  
Author(s):  
Marcel J. M. Schaaf ◽  
John A. Cidlowski

ABSTRACT The actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), which is activated upon ligand binding, and can alter the expression of target genes either by transrepression or transactivation. We have applied FRAP (fluorescence recovery after photobleaching) to quantitatively assess the mobility of the yellow fluorescent protein (YFP)-tagged human GR α-isoform (hGRα) in the nucleus of transiently transfected COS-1 cells and to elucidate determinants of its mobility. Addition of the high-affinity agonist dexamethasone markedly decreases the mobility of the receptor in a concentration-dependent manner, whereas low-affinity ligands like corticosterone decrease the mobility to a much lesser extent. Analysis of other hGRα ligands differing in affinity suggests that it is the affinity of the ligand that is a major determinant of the decrease in mobility. Similar results were observed for two hGRα antagonists, the low-affinity antagonist ZK98299 and the high-affinity antagonist RU486. The effect of ligand affinity on mobility was confirmed with the hGRα mutant Q642V, which has an altered affinity for triamcinolone acetonide, dexamethasone, and corticosterone. Analysis of hGRα deletion mutants indicates that both the DNA-binding domain and the ligand-binding domain of the receptor are required for a maximal ligand-induced decrease in receptor mobility. Interestingly, the mobility of transfected hGRα differs among cell types. Finally, the proteasome inhibitor MG132 immobilizes a subpopulation of unliganded receptors, via a mechanism requiring the DNA-binding domain and the N-terminal part of the ligand-binding domain. Ligand binding makes the GR resistant to the immobilizing effect of MG132, and this effect depends on the affinity of the ligand. Our data suggest that ligand binding induces a conformational change of the receptor which is dependent on the affinity of the ligand. This altered conformation decreases the mobility of the receptor, probably by targeting the receptor to relatively immobile nuclear domains with which it transiently associates. In addition, this conformational change blocks immobilization of the receptor by MG132.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2117-2117
Author(s):  
Wendy E Thomas ◽  
Rebecca A Penkala ◽  
Elaine Hillenmeyer ◽  
Matthew Whitfield ◽  
An-yue Tu ◽  
...  

Abstract Abstract 2117 Regulation of the bond between platelet glycoprotein (GP) Ibα of the GPIb-IX-V complex, and the von Willebrand Factor (VWF) A1 domain is critical to the balance between hemostasis and thrombosis, particularly in high shear conditions. The GPIbα-A1 interaction is known to be activated by shear stress and inhibited by neighboring domains in VWF, but the role of neighboring domains in the shear-dependence remained unknown. Here it is shown that platelet aggregation required shear stress in the presence of VWF proteins that contain the neighboring D′D3 domain (Plus D′D3 or plasma VWF) but that platelets aggregate spontaneously with a protein that lacks this region (Delta D′D3). Moreover, platelets and microspheres coated with the N-terminal 300 amino acids of GPIbα (GC300) bind to immobilized VWF in a shear-enhanced manner for Plus D′D3 but not for Delta D′D3. In single-molecule force spectroscopy experiments, the D′D3 domain decreased the number of GPIbα-A1 bonds that formed, but did not alter bond rupture force, consistent with the hypothesis that D′D3 shields the A1 domain. By expressing recombinant VWF fragments that contain the A1 domain and various lengths of the N-terminal region, we determined that most of the inhibition by the D′D3 domain was conferred by 23 amino acids in the linker between the A1 domain and the D′D3 domain. By anchoring the fragments to the surface in an oriented manner, we demonstrated that binding was much stronger when force was applied between GPIbα and the A1 C-terminus, than when force was applied between GPIbα and the A1 N-terminus, similar to what has been observed for integrins. Based on these results, we propose the following model for regulation of VWF by mechanical force. When multimeric VWF is stretched in flow, the D′D3 domains are pulled away from the A1 domains, exposing the latter to bind platelets. When force is applied between GPIbα and the C-terminus of A1, it induces an activating conformational change that could be analogous to that seen in integrins. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 208 (4) ◽  
pp. 401-414 ◽  
Author(s):  
Joseph E. Klebba ◽  
Brian J. Galletta ◽  
Jonathan Nye ◽  
Karen M. Plevock ◽  
Daniel W. Buster ◽  
...  

Plk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4’s tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown. In this paper, we investigated the Asl–Plk4 interaction in Drosophila melanogaster cells. Surprisingly, the N-terminal region of Asl is not required for centriole duplication, but a previously unidentified Plk4-binding domain in the C terminus is required. Mechanistic analyses of the different Asl regions revealed that they act uniquely during the cell cycle: the Asl N terminus promotes Plk4 homodimerization and autophosphorylation during interphase, whereas the Asl C terminus stabilizes Plk4 during mitosis. Therefore, Asl affects Plk4 in multiple ways to regulate centriole duplication. Asl not only targets Plk4 to centrioles but also modulates Plk4 stability and activity, explaining the ability of overexpressed Asl to drive centriole amplification.


Sign in / Sign up

Export Citation Format

Share Document