scholarly journals Melting of iron determined by X-ray absorption spectroscopy to 100 GPa

2015 ◽  
Vol 112 (39) ◽  
pp. 12042-12045 ◽  
Author(s):  
Giuliana Aquilanti ◽  
Angela Trapananti ◽  
Amol Karandikar ◽  
Innokenty Kantor ◽  
Carlo Marini ◽  
...  

Temperature, thermal history, and dynamics of Earth rely critically on the knowledge of the melting temperature of iron at the pressure conditions of the inner core boundary (ICB) where the geotherm crosses the melting curve. The literature on this subject is overwhelming, and no consensus has been reached, with a very large disagreement of the order of 2,000 K for the ICB temperature. Here we report new data on the melting temperature of iron in a laser-heated diamond anvil cell to 103 GPa obtained by X-ray absorption spectroscopy, a technique rarely used at such conditions. The modifications of the onset of the absorption spectra are used as a reliable melting criterion regardless of the solid phase from which the solid to liquid transition takes place. Our results show a melting temperature of iron in agreement with most previous studies up to 100 GPa, namely of 3,090 K at 103 GPa.

Author(s):  
Michael Pravica ◽  
Roman Chernikov ◽  
Kevin Ayala Pineda ◽  
Jianbao Zhao ◽  
Petrika Cifligu ◽  
...  

We examined the high pressure behavior of stannous oxalate via Raman and x-ray absorption spectroscopy (XAS) inside a diamond anvil cell. Phase transitions were observed to occur near 2.6 and...


2014 ◽  
Vol 43 (25) ◽  
pp. 9647-9654 ◽  
Author(s):  
K. Woodhead ◽  
S. Pascarelli ◽  
A. L. Hector ◽  
R. Briggs ◽  
N. Alderman ◽  
...  

The high pressure behavior of TaON was studied using a combination of Raman scattering, synchrotron X-ray diffraction, and X-ray absorption spectroscopy in diamond anvil cells to 70 GPa at ambient temperature to reveal evidence for a new structural transformation near 30 GPa.


2009 ◽  
Vol 80 (7) ◽  
pp. 073908 ◽  
Author(s):  
Xinguo Hong ◽  
Matthew Newville ◽  
Vitali B. Prakapenka ◽  
Mark L. Rivers ◽  
Stephen R. Sutton

2017 ◽  
Vol 211 ◽  
pp. 228-255 ◽  
Author(s):  
Sarah L. Nicholas ◽  
Melinda L. Erickson ◽  
Laurel G. Woodruff ◽  
Alan R. Knaeble ◽  
Matthew A. Marcus ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1241
Author(s):  
Christopher A. Lee ◽  
Arjen van Veelen ◽  
Katherine Morris ◽  
J. Fred W. Mosselmans ◽  
Roy A. Wogelius ◽  
...  

Portlandite [Ca(OH)2] is a potentially dominant solid phase in the high pH fluids expected within the cementitious engineered barriers of Geological Disposal Facilities (GDF). This study combined X-Ray Absorption Spectroscopy with computational modelling in order to provide atomic-scale data which improves our understanding of how a critically important radionuclide (U) will be adsorbed onto this phase under conditions relevant to a GDF environment. Such data are fundamental for predicting radionuclide mass transfer. Surface coordination chemistry and speciation of uranium with portlandite [Ca(OH)2] under alkaline groundwater conditions (ca. pH 12) were determined by both in situ and ex situ grazing incidence extended X-ray absorption fine structure analysis (EXAFS) and by computational modelling at the atomic level. Free energies of sorption of aqueous uranyl hydroxides, [UO2(OH)n]2-n (n = 0–5) with the (001), (100) and (203) or (101) surfaces of portlandite are predicted from the potential of mean force using classical molecular umbrella sampling simulation methods and the structural interactions are further explored using fully periodic density functional theory computations. Although uranyl is predicted to only weakly adsorb to the (001) and (100) clean surfaces, there should be significantly stronger interactions with the (203/101) surface or at hydroxyl vacancies, both prevalent under groundwater conditions. The uranyl surface complex is typically found to include four equatorially coordinated hydroxyl ligands, forming an inner-sphere sorbate by direct interaction of a uranyl oxygen with surface calcium ions in both the (001) and (203/101) cases. In contrast, on the (100) surface, uranyl is sorbed with its axis more parallel to the surface plane. The EXAFS data are largely consistent with a surface structural layer or film similar to calcium uranate, but also show distinct uranyl characteristics, with the uranyl ion exhibiting the classic dioxygenyl oxygens at 1.8 Å and between four and five equatorial oxygen atoms at distances between 2.28 and 2.35 Å from the central U absorber. These experimental data are wholly consistent with the adsorbate configuration predicted by the computational models. These findings suggest that, under the strongly alkaline conditions of a cementitious backfill engineered barrier, there would be significant uptake of uranyl by portlandite to inhibit the mobility of U(VI) from the near field of a geological disposal facility.


2016 ◽  
Vol 58 (2) ◽  
pp. 421-426 ◽  
Author(s):  
V. G. Vlasenko ◽  
S. S. Podsukhina ◽  
A. V. Kozinkin ◽  
Ya. V. Zubavichus

Sign in / Sign up

Export Citation Format

Share Document