scholarly journals Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition

2015 ◽  
Vol 112 (22) ◽  
pp. 6955-6960 ◽  
Author(s):  
Hsin-Yung Yen ◽  
Ying-Chih Liu ◽  
Nai-Yu Chen ◽  
Chia-Feng Tsai ◽  
Yi-Ting Wang ◽  
...  

Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation.

2013 ◽  
Vol 31 (31) ◽  
pp. 3987-3996 ◽  
Author(s):  
Justin F. Gainor ◽  
Alice T. Shaw

The success of tyrosine kinase inhibitors (TKIs) in select patients with non–small-cell lung cancer (NSCLC) has transformed management of the disease, placing new emphasis on understanding the molecular characteristics of tumor specimens. It is now recognized that genetic alterations in the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) define two unique subtypes of NSCLC that are highly responsive to genotype-directed TKIs. Despite this initial sensitivity, however, the long-term effectiveness of such therapies is universally limited by the development of resistance. Identifying the mechanisms underlying this resistance is an area of intense, ongoing investigation. In this review, we provide an overview of recent experience in the field, focusing on results from preclinical resistance models and studies of patient-derived, TKI-resistant tumor specimens. Although diverse TKI resistance mechanisms have been identified within EGFR-mutant and ALK-positive patients, we highlight common principles of resistance shared between these groups. These include the development of secondary mutations in the kinase target, gene amplification of the primary oncogene, and upregulation of bypass signaling tracts. In EGFR-mutant and ALK-positive patients alike, acquired resistance may also be a dynamic and multifactorial process that may necessitate the use of treatment combinations. We believe that insights into the mechanisms of TKI resistance in patients with EGFR mutations or ALK rearrangements may inform the development of novel treatment strategies in NSCLC, which may also be generalizable to other kinase-driven malignancies.


2015 ◽  
Vol 33 (15_suppl) ◽  
pp. e19078-e19078
Author(s):  
Rosario Garcia Campelo ◽  
Teresa Moran ◽  
Felipe Cardenal ◽  
Guillermo Alonso-Jaudenes Curbera ◽  
Enric Carcereny Costa ◽  
...  

Oncology ◽  
2014 ◽  
Vol 86 (2) ◽  
pp. 86-93 ◽  
Author(s):  
Jun Fukihara ◽  
Naohiro Watanabe ◽  
Hiroyuki Taniguchi ◽  
Yasuhiro Kondoh ◽  
Tomoki Kimura ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-8
Author(s):  
F. Meriggi ◽  
A. Zaniboni

Lung cancer is the leading cause of cancer-related mortality in both men and women and approximately 219,440 new cases of nonsmall cell lung cancer (NSCLC) were estimated to occur in the USA in 2009, which caused 159,390 NSCLC-related deaths. More than 50% of cases of advanced NSCLC are diagnosed in patients older than age 65, and recent Surveillance Epidemiology and End Results (SEERs) data suggest that the median age at diagnosis is 70 years. Until recently, the disease has been undertreated in this patient population, with a perception among many clinicians that elderly patients do not tolerate chemotherapy or radiotherapy. So, single agent chemotherapy is the recommended approach by the ASCO and International Expert Panels in unselected patients. The introduction of novel targeted therapies, such as Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors (TKIs) which improved survival versus placebo in patients who had previously failed on chemotherapy, gives clinicians new, effective, and better tolerated options to consider when treating NSCLC in elderly patients. This paper describes the advances of EGFR TKIs for elderly patients with advanced NSCLC.


Sign in / Sign up

Export Citation Format

Share Document