scholarly journals The LGI1–ADAM22 protein complex directs synapse maturation through regulation of PSD-95 function

2015 ◽  
Vol 112 (30) ◽  
pp. E4129-E4137 ◽  
Author(s):  
Kathryn L. Lovero ◽  
Yuko Fukata ◽  
Adam J. Granger ◽  
Masaki Fukata ◽  
Roger A. Nicoll

Synapse development is coordinated by a number of transmembrane and secreted proteins that come together to form synaptic organizing complexes. Whereas a variety of synaptogenic proteins have been characterized, much less is understood about the molecular networks that support the maintenance and functional maturation of nascent synapses. Here, we demonstrate that leucine-rich, glioma-inactivated protein 1 (LGI1), a secreted protein previously shown to modulate synaptic AMPA receptors, is a paracrine signal released from pre- and postsynaptic neurons that acts specifically through a disintegrin and metalloproteinase protein 22 (ADAM22) to set postsynaptic strength. We go on to describe a novel role for ADAM22 in maintaining excitatory synapses through PSD-95/Dlg1/zo-1 (PDZ) domain interactions. Finally, we show that in the absence of LGI1, the mature synapse scaffolding protein PSD-95, but not the immature synapse scaffolding protein SAP102, is unable to modulate synaptic transmission. These results indicate that LGI1 and ADAM22 form an essential synaptic organizing complex that coordinates the maturation of excitatory synapses by regulating the functional incorporation of PSD-95.

2021 ◽  
Vol 15 ◽  
Author(s):  
Wen-Jun Gao ◽  
Nancy R. Mack

Abnormal social behavior, including both hypo- and hypersociability, is often observed in neurodevelopmental disorders such as autism spectrum disorders. However, the mechanisms associated with these two distinct social behavior abnormalities remain unknown. Postsynaptic density protein-95 (PSD-95) is a highly abundant scaffolding protein in the excitatory synapses and an essential regulator of synaptic maturation by binding to NMDA and AMPA receptors. The DLG4 gene encodes PSD-95, and it is a risk gene for hypersocial behavior. Interestingly, PSD-95 knockout mice exhibit hyposociability during adolescence but hypersociability in adulthood. The adolescent hyposociability is accompanied with an NMDAR hyperfunction in the medial prefrontal cortex (mPFC), an essential part of the social brain for control of sociability. The maturation of mPFC development is delayed until young adults. However, how PSD-95 deficiency affects the functional maturation of mPFC and its connection with other social brain regions remains uncharacterized. It is especially unknown how PSD-95 knockout drives the switch of social behavior from hypo- to hyper-sociability during adolescent-to-adult development. We propose an NMDAR-dependent developmental switch of hypo- to hyper-sociability. PSD-95 deficiency disrupts NMDAR-mediated synaptic connectivity of mPFC and social brain during development in an age- and pathway-specific manner. By utilizing the PSD-95 deficiency mouse, the mechanisms contributing to both hypo- and hyper-sociability can be studied in the same model. This will allow us to assess both local and long-range connectivity of mPFC and examine how they are involved in the distinct impairments in social behavior and how changes in these connections may mature over time.


2018 ◽  
Vol 145 (6) ◽  
pp. 449-463 ◽  
Author(s):  
Srinivas Kumar Ponna ◽  
Salla Ruskamo ◽  
Matti Myllykoski ◽  
Corinna Keller ◽  
Tobias M. Boeckers ◽  
...  

Neuron ◽  
2018 ◽  
Vol 100 (5) ◽  
pp. 1116-1132.e13 ◽  
Author(s):  
Elena Blanco-Suarez ◽  
Tong-Fei Liu ◽  
Alex Kopelevich ◽  
Nicola J. Allen

2021 ◽  
Vol 7 ◽  
Author(s):  
Amy O. Stevens ◽  
Yi He

PICK1 is a multi-domain scaffolding protein that is uniquely comprised of both a PDZ domain and a BAR domain. While previous experiments have shown that the PDZ domain and the linker positively regulate the BAR domain and the C-terminus negatively regulates the BAR domain, the details of internal regulation mechanisms are unknown. Molecular dynamics (MD) simulations have been proven to be a useful tool in revealing the intramolecular interactions at atomic-level resolution. PICK1 performs its biological functions in a dimeric form which is extremely computationally demanding to simulate with an all-atom force field. Here, we use coarse-grained MD simulations to expose the key residues and driving forces in the internal regulations of PICK1. While the PDZ and BAR domains do not form a stable complex, our simulations show the PDZ domain preferentially interacting with the concave surface of the BAR domain over other BAR domain regions. Furthermore, our simulations show that the short helix in the linker region can form interactions with the PDZ domain. Our results reveal that the surface of the βB-βC loop, βC strand, and αA-βD loop of the PDZ domain can form a group of hydrophobic interactions surrounding the linker helix. These interactions are driven by hydrophobic forces. In contrast, our simulations reveal a very dynamic C-terminus that most often resides on the convex surface of the BAR domain rather than the previously suspected concave surface. These interactions are driven by a combination of electrostatic and hydrophobic interactions.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Gyun Jee Song ◽  
Stacey Barrick ◽  
Kristen L Leslie ◽  
Nathalie M Fiaschi-Taesch ◽  
Alessandro Bisello

The PDZ domain-containing scaffolding protein, Ezrin-Radixin-Moesin-binding phosphoprotein 50 (EBP50) regulates vascular stenosis following endoluminal vessel injury. Its expression in vascular smooth muscle cells (VSMC) increases after wire injury, and neointima formation is significantly reduced in EBP50 knockout (KO) mice. The molecular mechanisms underlying EBP50 actions in VSMC are unknown. Genetic ablation of EBP50 reduced VSMC proliferation and was associated with increased (5-fold) expression of the cell cycle inhibitor p21cip1 both in vessels and in primary cells. No differences in mRNA levels of p21cip1 were observed in WT and KO cells. However, the half-life of p21cip1 in KO VSMC was significantly longer than in WT VSMC (80 min vs. 45 min) and p21cip1 levels were similar in WT and KO VSMC treated with the proteasome inhibitor MG132. These observations suggest that EBP50 regulates post-translational degradation of p21cip1. The S-phase kinase-associated protein 2 (skp2) is a component of the E3 ligase complex that degrades p21cip1. The C-terminal four amino acids of skp2 (ProSerCysLeu) are a canonical PDZ-binding sequence. Indeed, co-immunoprecipitation and in-gel overlay assays demonstrated the direct interaction between EBP50 and skp2. Mutation of the C-terminal Leu to Ala (L424A-skp2) abrogated the interaction with EBP50. Skp2 expression was significantly lower in KO than in WT cells and inhibition of EBP50 expression by an shRNA lentivirus decreased skp2 expression in WT cells. Moreover, expression of skp2, but not of the mutant L424A-skp2, in WT cells reduced p21cip1 levels. Therefore, EBP50 regulates both expression and activity of skp2 with attendant effects on p21cip1 and VSMC proliferation. Collectively, these experiments show that EBP50, by regulating skp2 and p21cip1 expression, controls VSMC proliferation and the progression of neointima formation. These studies identify a novel function for EBP50 in the direct regulation of the cell cycle and provide a mechanistic basis for the remarkable effect of this scaffolding protein on vascular remodeling.


1997 ◽  
Vol 75 ◽  
pp. 7
Author(s):  
David S. Bredt ◽  
Karen S. Christopherson ◽  
Jay E. Brenman

2019 ◽  
Vol 20 (12) ◽  
pp. 3038 ◽  
Author(s):  
Nina S. Levy ◽  
George K. E. Umanah ◽  
Eli J. Rogers ◽  
Reem Jada ◽  
Orit Lache ◽  
...  

Mutations in IQSEC2 cause intellectual disability (ID), which is often accompanied by seizures and autism. A number of studies have shown that IQSEC2 is an abundant protein in excitatory synapses and plays an important role in neuronal development as well as synaptic plasticity. Here, we review neuronal IQSEC2 signaling with emphasis on those aspects likely to be involved in autism. IQSEC2 is normally bound to N-methyl-D-aspartate (NMDA)-type glutamate receptors via post synaptic density protein 95 (PSD-95). Activation of NMDA receptors results in calcium ion influx and binding to calmodulin present on the IQSEC2 IQ domain. Calcium/calmodulin induces a conformational change in IQSEC2 leading to activation of the SEC7 catalytic domain. GTP is exchanged for GDP on ADP ribosylation factor 6 (ARF6). Activated ARF6 promotes downregulation of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors through a c-jun N terminal kinase (JNK)-mediated pathway. NMDA receptors, AMPA receptors, and PSD-95 are all known to be adversely affected in autism. An IQSEC2 transgenic mouse carrying a constitutively active mutation (A350V) shows autistic features and reduced levels of surface AMPA receptor subunit GluA2. Sec7 activity and AMPA receptor recycling are presented as two targets, which may respond to drug treatment in IQSEC2-associated ID and autism.


Sign in / Sign up

Export Citation Format

Share Document