scholarly journals Multiplex assessment of the positions of odorant receptor-specific glomeruli in the mouse olfactory bulb by serial two-photon tomography

2015 ◽  
Vol 112 (43) ◽  
pp. E5873-E5882 ◽  
Author(s):  
Bolek Zapiec ◽  
Peter Mombaerts

In the mouse, axons of olfactory sensory neurons (OSNs) that express the same odorant receptor (OR) gene coalesce into one or a few glomeruli in the olfactory bulb. The positions of OR-specific glomeruli are traditionally described as stereotyped. Here, we have assessed quantitatively the positions of OR-specific glomeruli using serial two-photon tomography, an automated method for whole-organ fluorescence imaging that integrates two-photon microscopy with serial microtome sectioning. Our strategy is multiplexed. By repeated crossing, we generated two strains of mice with gene-targeted mutations at four or five OR loci for a total of six ORs: MOR23 (Olfr16), mOR37A (Olfr155), M72 (Olfr160), P2 (Olfr17), MOR256-17 (Olfr15), and MOR28 (Olfr1507). Glomerular imaging relied on intrinsic fluorescence of GFP or DsRed, or on whole-mount immunofluorescence with antibodies against GFP, DsRed, or β-gal using the method of immunolabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO). The high-resolution 3D-reconstructed datasets were segmented to identify the labeled glomeruli and to assess glomerular positional variability between the bulbs of one mouse (intraindividual) and among the bulbs of different mice (interindividual). In 26 mice aged 21 or 50 d or 10 wk, we made measurements of the positions of 352 glomeruli. We find that positional variability of glomeruli correlates with the OR: For instance, the medial MOR28 glomerular domain occupies a surface area that is an order of magnitude larger than the surface area of the medial MOR23 glomerular domain. Our results quantify the level of precision that is delivered by the mechanisms of OSN axon wiring, differentially for the various OSN populations expressing distinct OR genes.

2013 ◽  
Vol 34 (2) ◽  
pp. 325-331 ◽  
Author(s):  
Kazuto Masamoto ◽  
Hiroyuki Takuwa ◽  
Chie Seki ◽  
Junko Taniguchi ◽  
Yoshiaki Itoh ◽  
...  

The present study aimed to determine the spatiotemporal dynamics of microvascular and astrocytic adaptation during hypoxia-induced cerebral angiogenesis. Adult C57BL/6J and Tie2-green fluorescent protein (GFP) mice with vascular endothelial cells expressing GFP were exposed to normobaric hypoxia for 3 weeks, whereas the three-dimensional microvessels and astrocytes were imaged repeatedly using two-photon microscopy. After 7 to14 days of hypoxia, a vessel sprout appeared from the capillaries with a bump-like head shape (mean diameter 14  μm), and stagnant blood cells were seen inside the sprout. However, no detectable changes in the astrocyte morphology were observed for this early phase of the hypoxia adaptation. More than 50% of the sprouts emerged from capillaries 60  μm away from the center penetrating arteries, which indicates that the capillary distant from the penetrating arteries is a favored site for sprouting. After 14 to 21 days of hypoxia, the sprouting vessels created a new connection with an existing capillary. In this phase, the shape of the new vessel and its blood flow were normalized, and the outside of the vessels were wrapped with numerous processes from the neighboring astrocytes. The findings indicate that hypoxia-induced cerebral angiogenesis provokes the adaptation of neighboring astrocytes, which may stabilize the blood–brain barrier in immature vessels.


2019 ◽  
Vol 44 (9) ◽  
pp. 705-720
Author(s):  
James E Farber ◽  
Robert P Lane

Abstract Olfactory neuronal function depends on the expression and proper regulation of odorant receptor (OR) genes. Previous studies have identified 54 putative intergenic enhancers within or flanking 40 mouse OR clusters. At least 2 of these putative enhancers have been shown to regulate the expression of a small subset of proximal OR genes. In recognition of the large size of the mouse OR gene family (~1400 OR genes distributed across multiple chromosomal loci), it is likely that there remain many additional not-as-yet discovered OR enhancers. We utilized 23 of the previously identified enhancers as a training set (TS) and designed an algorithm that combines a broad range of epigenetic criteria (histone-3-lysine-4 monomethylation, histone-3-lysine-79 trimethylation, histone-3-lysine-27 acetylation, and DNase hypersensitivity) and genetic criteria (cross-species sequence conservation and transcription-factor binding site enrichment) to more broadly search OR gene clusters for additional candidates. We identified 181 new candidate enhancers located at 58 (of 68) mouse OR loci, including 25 new candidates identified by stringent search criteria whose signal strengths are not significantly different from the 23 previously characterized OR enhancers used as the TS. Additionally, we compared OR enhancer versus generic enhancer features in order to evaluate likelihoods that new enhancer candidates specifically function in OR regulation. We found that features distinguishing OR-specific function are significantly more evident for enhancer candidates located within OR clusters as compared with those in flanking regions.


2000 ◽  
Vol 6 (S2) ◽  
pp. 802-803
Author(s):  
J. T. Fourkas ◽  
M. J. R. Previte ◽  
R. A. Farrer ◽  
C. Olson ◽  
L. A. Peyser

The ability to observe the fluorescence arising from single molecules has revolutionized our ability to study the structure and dynamics of materials on a microscopic level and to probe the properties of individual members of a heterogeneous ensemble. A variety of near-field and far-field excitation techniques have been employed to study single molecules. Multiphoton excitation (MPE) techniques have a number of advantages that make them particularly attractive for singlemolecule detection. First, because the excitation and fluorescence wavelengths are significantly different from one another, Rayleigh and Raman scattering can easily be filtered out, leading to a low number of background counts. Second, because the probability for MPE depends on the excitation intensity to the second or higher power, the excitation is localized to the point in space where the excitation beam is most tightly focussed, thus providing three-dimensional resolution.


2014 ◽  
Vol 63 (1) ◽  
pp. 8-21 ◽  
Author(s):  
Leah M. Zadrozny ◽  
Edward B. Neufeld ◽  
Bertrand M. Lucotte ◽  
Patricia S. Connelly ◽  
Zu-Xi Yu ◽  
...  

Cell Reports ◽  
2018 ◽  
Vol 25 (5) ◽  
pp. 1371-1383.e10 ◽  
Author(s):  
Doycho Karagyozov ◽  
Mirna Mihovilovic Skanata ◽  
Amanda Lesar ◽  
Marc Gershow

Sign in / Sign up

Export Citation Format

Share Document