scholarly journals Long antibody HCDR3s from HIV-naïve donors presented on a PG9 neutralizing antibody background mediate HIV neutralization

2016 ◽  
Vol 113 (16) ◽  
pp. 4446-4451 ◽  
Author(s):  
Jordan R. Willis ◽  
Jessica A. Finn ◽  
Bryan Briney ◽  
Gopal Sapparapu ◽  
Vidisha Singh ◽  
...  

Development of broadly neutralizing antibodies (bnAbs) against HIV-1 usually requires prolonged infection and induction of Abs with unusual features, such as long heavy-chain complementarity-determining region 3 (HCDR3) loops. Here we sought to determine whether the repertoires of HIV-1–naïve individuals contain Abs with long HCDR3 loops that could mediate HIV-1 neutralization. We interrogated at massive scale the structural properties of long Ab HCDR3 loops in HIV-1–naïve donors, searching for structured HCDR3s similar to those of the HIV-1 bnAb PG9. We determined the nucleotide sequences encoding 2.3 × 107unique HCDR3 amino acid regions from 70 different HIV-1–naïve donors. Of the 26,917 HCDR3 loops with 30-amino acid length identified, we tested 30 for further study that were predicted to have PG9-like structure when chimerized onto PG9. Three of these 30 PG9 chimeras bound to the HIV-1 gp120 monomer, and two were neutralizing. In addition, we found 14 naturally occurring HCDR3 sequences that acquired the ability to bind to the HIV-1 gp120 monomer when adding 2- to 7-amino acid mutations via computational design. Of those 14 designed Abs, 8 neutralized HIV-1, with IC50values ranging from 0.7 to 98 µg/mL. These data suggest that the repertoire of HIV-1–naïve individuals contains rare B cells that encode HCDR3 loops that bind or neutralize HIV-1 when presented on a PG9 background with relatively few or no additional mutations. Long HCDR3 sequences are present in the HIV-naïve B-cell repertoire, suggesting that this class of bnAbs is a favorable target for rationally designed preventative vaccine efforts.

Author(s):  
Anna Z. Wec ◽  
Daniel Wrapp ◽  
Andrew S. Herbert ◽  
Daniel Maurer ◽  
Denise Haslwanter ◽  
...  

Broadly protective vaccines against known and pre-emergent coronaviruses are urgently needed. Critical to their development is a deeper understanding of cross-neutralizing antibody responses induced by natural human coronavirus (HCoV) infections. Here, we mined the memory B cell repertoire of a convalescent SARS donor and identified 200 SARS-CoV-2 binding antibodies that target multiple conserved sites on the spike (S) protein. A large proportion of the antibodies display high levels of somatic hypermutation and cross-react with circulating HCoVs, suggesting recall of pre-existing memory B cells (MBCs) elicited by prior HCoV infections. Several antibodies potently cross-neutralize SARS-CoV, SARS-CoV-2, and the bat SARS-like virus WIV1 by blocking receptor attachment and inducing S1 shedding. These antibodies represent promising candidates for therapeutic intervention and reveal a new target for the rational design of pan-sarbecovirus vaccines.


Science ◽  
2020 ◽  
Vol 369 (6504) ◽  
pp. 731-736 ◽  
Author(s):  
Anna Z. Wec ◽  
Daniel Wrapp ◽  
Andrew S. Herbert ◽  
Daniel P. Maurer ◽  
Denise Haslwanter ◽  
...  

Broadly protective vaccines against known and preemergent human coronaviruses (HCoVs) are urgently needed. To gain a deeper understanding of cross-neutralizing antibody responses, we mined the memory B cell repertoire of a convalescent severe acute respiratory syndrome (SARS) donor and identified 200 SARS coronavirus 2 (SARS-CoV-2) binding antibodies that target multiple conserved sites on the spike (S) protein. A large proportion of the non-neutralizing antibodies display high levels of somatic hypermutation and cross-react with circulating HCoVs, suggesting recall of preexisting memory B cells elicited by prior HCoV infections. Several antibodies potently cross-neutralize SARS-CoV, SARS-CoV-2, and the bat SARS-like virus WIV1 by blocking receptor attachment and inducing S1 shedding. These antibodies represent promising candidates for therapeutic intervention and reveal a target for the rational design of pan-sarbecovirus vaccines.


2007 ◽  
Vol 81 (12) ◽  
pp. 6402-6411 ◽  
Author(s):  
Zane Kraft ◽  
Nina R. Derby ◽  
Ruth A. McCaffrey ◽  
Rachel Niec ◽  
Wendy M. Blay ◽  
...  

ABSTRACT The development of anti-human immunodeficiency virus (anti-HIV) neutralizing antibodies and the evolution of the viral envelope glycoprotein were monitored in rhesus macaques infected with a CCR5-tropic simian/human immunodeficiency virus (SHIV), SHIVSF162P4. Homologous neutralizing antibodies developed within the first month of infection in the majority of animals, and their titers were independent of the extent and duration of viral replication during chronic infection. The appearance of homologous neutralizing antibody responses was preceded by the appearance of amino acid changes in specific variable and conserved regions of gp120. Amino acid changes first appeared in the V1, V2, C2, and V3 regions and subsequently in the C3, V4, and V5 regions. Heterologous neutralizing antibody responses developed over time only in animals with sustained plasma viremia. Within 2 years postinfection the breadth of these responses was as broad as that observed in certain patients infected with HIV type 1 (HIV-1) for over a decade. Despite the development of broad anti-HIV-1 neutralizing antibody responses, viral replication persisted in these animals due to viral escape. Our studies indicate that cross-reactive neutralizing antibodies are elicited in a subset of SHIVSF162P4 infected macaques and that their development requires continuous viral replication for extended periods of time. More importantly, their late appearance does not prevent progression to disease. The availability of an animal model where cross-reactive anti-HIV neutralizing antibodies are developed may facilitate the identification of virologic and immunologic factors conducive to the development of such antibodies.


2012 ◽  
Vol 20 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Vincent J. Venditto ◽  
Douglas S. Watson ◽  
Michael Motion ◽  
David Montefiori ◽  
Francis C. Szoka

ABSTRACTThe inability to generate broadly neutralizing antibody (bnAb) responses to the membrane proximal external region (MPER) of HIV-1 gp41 using current vaccine strategies has hampered efforts to prevent the spread of HIV. To address this challenge, we investigated a novel hypothesis to help improve the anti-MPER antibody response. Guided by structural insights and the unique lipid reactivity of anti-MPER bnAbs, we considered whether amino acid side chain modifications that emulate hydrophilic phospholipid head groups could contribute to the generation of 2F5-like or 4E10-like neutralizing anti-MPER antibodies. To test this hypothesis, we generated a series of chemically modified MPER immunogens through derivatization of amino acid side chains with phosphate or nitrate groups. We evaluated the binding affinity of the chemically modified peptides to their cognate monoclonal antibodies, 2F5 and 4E10, using surface plasmon resonance. The modifications had little effect on binding to the antibodies and did not influence epitope secondary structure when presented in liposomes. We selected five of the chemically modified sequences to immunize rabbits and found that an immunogen containing both the 2F5 and 4E10 epitopes and a phosphorylated threonine at T676 elicited the highest anti-peptide IgG titers, although the high antipeptide titers did not confer higher neutralizing activity. These data indicate that side chain modifications adjacent to known neutralizing antibody epitopes are capable of eliciting antibody responses to the MPER but that these chemically modified gp41 epitopes do not induce neutralizing antibodies.


2021 ◽  
Author(s):  
Thayne H Dickey ◽  
Wai Kwan Tang ◽  
Brandi Butler ◽  
Tarik Ouahes ◽  
Sachy Orr-Gonzalez ◽  
...  

The receptor binding domain (RBD) of the SARS-CoV-2 spike protein is the primary target of neutralizing antibodies and is a component of almost all vaccine candidates. Here, RBD immunogens were created with stabilizing amino acid changes that improve the neutralizing antibody response, as well as characteristics for production, storage, and distribution. A computational design and in vitro screening platform identified three improved immunogens, each with approximately nine amino acid changes relative to the native RBD sequence and four key changes conserved between immunogens. The changes are adaptable to all vaccine platforms, are compatible with established changes in SARS-CoV-2 vaccines, and are compatible with mutations in emerging variants of concern. The immunogens elicit higher levels of neutralizing antibodies than native RBD, focus the immune response to structured neutralizing epitopes, and have increased production yields and thermostability. Incorporating these variant-independent amino acid changes in next-generation vaccines may enhance the neutralizing antibody response and lead to pan-SARS-CoV-2 protection.


2010 ◽  
Vol 84 (12) ◽  
pp. 6082-6095 ◽  
Author(s):  
Sachiyo Tsuji-Kawahara ◽  
Tomomi Chikaishi ◽  
Eri Takeda ◽  
Maiko Kato ◽  
Saori Kinoshita ◽  
...  

ABSTRACT Several host genes control retroviral replication and pathogenesis through the regulation of immune responses to viral antigens. The Rfv3 gene influences the persistence of viremia and production of virus-neutralizing antibodies in mice infected with Friend mouse retrovirus complex (FV). This locus has been mapped within a narrow segment of mouse chromosome 15 harboring the APOBEC3 and BAFF-R loci, both of which show functional polymorphisms among different strains of mice. The exon 5-lacking product of the APOBEC3 allele expressed in FV-resistant C57BL/6 (B6) mice directly restricts viral replication, and mice lacking the B6-derived APOBEC3 exhibit exaggerated pathology and reduced production of neutralizing antibodies. However, the mechanisms by which the polymorphisms at the APOBEC3 locus affect the production of neutralizing antibodies remain unclear. Here we show that the APOBEC3 genotypes do not directly affect the B-cell repertoire, and mice lacking B6-derived APOBEC3 still produce FV-neutralizing antibodies in the presence of primed T helper cells. Instead, higher viral loads at a very early stage of FV infection caused by either a lack of the B6-derived APOBEC3 or a lack of the wild-type BAFF-R resulted in slower production of neutralizing antibodies. Indeed, B cells were hyperactivated soon after infection in the APOBEC3- or BAFF-R-deficient mice. In contrast to mice deficient in the B6-derived APOBEC3, which cleared viremia by 4 weeks after FV infection, mice lacking the functional BAFF-R allele exhibited sustained viremia, indicating that the polymorphisms at the BAFF-R locus may better explain the Rfv3-defining phenotype of persistent viremia.


2015 ◽  
Vol 89 (16) ◽  
pp. 8130-8151 ◽  
Author(s):  
Katie M. Kilgore ◽  
Megan K. Murphy ◽  
Samantha L. Burton ◽  
Katherine S. Wetzel ◽  
S. Abigail Smith ◽  
...  

ABSTRACTAntibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the immunogen.IMPORTANCEMany in the HIV/AIDS vaccine field believe that the ability to elicit broadly neutralizing antibodies capable of blocking genetically diverse HIV-1 variants is a critical component of a protective vaccine. Various SIV-based nonhuman primate vaccine studies have investigated ways to improve antibody-mediated protection against a heterologous SIV challenge, including administering adjuvants that might stimulate a greater neutralization breadth. Using a novel SIV neutralization panel and samples from four rhesus macaque vaccine trials designed for cross comparison, we show that different regimens expressing the same SIV envelope immunogen consistently elicit antibodies that neutralize only the very sensitive tier 1a SIV variants. The results argue that the neutralizing antibody profile elicited by a vaccine is primarily determined by the envelope immunogen and is not substantially broadened by including adjuvants, resulting in the conclusion that the envelope immunogen itself should be the primary consideration in efforts to elicit antibodies with greater neutralization breadth.


2021 ◽  
Author(s):  
Jenna J. Guthmiller ◽  
Julianna Han ◽  
Henry A. Utset ◽  
Lei Li ◽  
Linda Yu-Ling Lan ◽  
...  

SummaryBroadly neutralizing antibodies against influenza virus hemagglutinin (HA) have the potential to provide universal protection against influenza virus infections. Here, we report a distinct class of broadly neutralizing antibodies targeting an epitope toward the bottom of the HA stalk domain where HA is “anchored” to the viral membrane. Antibodies targeting this membrane-proximal anchor epitope utilized a highly restricted repertoire, which encode for two conserved motifs responsible for HA binding. Anchor targeting B cells were common in the human memory B cell repertoire across subjects, indicating pre-existing immunity against this epitope. Antibodies against the anchor epitope at both the serological and monoclonal antibody levels were potently induced in humans by a chimeric HA vaccine, a potential universal influenza virus vaccine. Altogether, this study reveals an underappreciated class of broadly neutralizing antibodies against H1-expressing viruses that can be robustly recalled by a candidate universal influenza virus vaccine.


2011 ◽  
Vol 01 (01) ◽  
pp. 1-13 ◽  
Author(s):  
Duri Kerina ◽  
Felicity Zvanyadza Gumbo ◽  
Knut Ivans Kristiansen ◽  
Munyaradzi Paul Mapingure ◽  
Simba Rusakaniko ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jue Hou ◽  
Shuhui Wang ◽  
Dan Li ◽  
Lindsay N. Carpp ◽  
Tong Zhang ◽  
...  

Both vaccine “take” and neutralizing antibody (nAb) titer are historical correlates for vaccine-induced protection from smallpox. We analyzed a subset of samples from a phase 2a trial of three DNA/HIV-1 primes and a recombinant Tiantan vaccinia virus-vectored (rTV)/HIV-1 booster and found that a proportion of participants showed no anti-vaccinia nAb response to the rTV/HIV-1 booster, despite successful vaccine “take.” Using a rich transcriptomic and vaccinia-specific immunological dataset with fine kinetic sampling, we investigated the molecular mechanisms underlying nAb response. Blood transcription module analysis revealed the downregulation of the activator protein 1 (AP-1) pathway in responders, but not in non-responders, and the upregulation of T-cell activation in responders. Furthermore, transcriptional factor network reconstruction revealed the upregulation of AP-1 core genes at hour 4 and day 1 post-rTV/HIV-1 vaccination, followed by a downregulation from day 3 until day 28 in responders. In contrast, AP-1 core and pro-inflammatory genes were upregulated on day 7 in non-responders. We speculate that persistent pro-inflammatory signaling early post-rTV/HIV-1 vaccination inhibits the nAb response.


Sign in / Sign up

Export Citation Format

Share Document