scholarly journals CK2 acts as a potent negative regulator of receptor-mediated insulin release in vitro and in vivo

2015 ◽  
Vol 112 (49) ◽  
pp. E6818-E6824 ◽  
Author(s):  
Mario Rossi ◽  
Inigo Ruiz de Azua ◽  
Luiz F. Barella ◽  
Wataru Sakamoto ◽  
Lu Zhu ◽  
...  

G protein-coupled receptors (GPCRs) regulate virtually all physiological functions including the release of insulin from pancreatic β-cells. β-Cell M3 muscarinic receptors (M3Rs) are known to play an essential role in facilitating insulin release and maintaining proper whole-body glucose homeostasis. As is the case with other GPCRs, M3R activity is regulated by phosphorylation by various kinases, including GPCR kinases and casein kinase 2 (CK2). At present, it remains unknown which of these various kinases are physiologically relevant for the regulation of β-cell activity. In the present study, we demonstrate that inhibition of CK2 in pancreatic β-cells, knockdown of CK2α expression, or genetic deletion of CK2α in β-cells of mutant mice selectively augmented M3R-stimulated insulin release in vitro and in vivo. In vitro studies showed that this effect was associated with an M3R-mediated increase in intracellular calcium levels. Treatment of mouse pancreatic islets with CX4945, a highly selective CK2 inhibitor, greatly reduced agonist-induced phosphorylation of β-cell M3Rs, indicative of CK2-mediated M3R phosphorylation. We also showed that inhibition of CK2 greatly enhanced M3R-stimulated insulin secretion in human islets. Finally, CX4945 treatment protected mice against diet-induced hyperglycemia and glucose intolerance in an M3R-dependent fashion. Our data demonstrate, for the first time to our knowledge, the physiological relevance of CK2 phosphorylation of a GPCR and suggest the novel concept that kinases acting on β-cell GPCRs may represent novel therapeutic targets.

2010 ◽  
Vol 107 (17) ◽  
pp. 7999-8004 ◽  
Author(s):  
Inigo Ruiz de Azua ◽  
Marco Scarselli ◽  
Erica Rosemond ◽  
Dinesh Gautam ◽  
William Jou ◽  
...  

2015 ◽  
Vol 35 (5) ◽  
pp. 1892-1904 ◽  
Author(s):  
Dan-dan Yin ◽  
Er-bao Zhang ◽  
Liang-hui You ◽  
Ning Wang ◽  
Lin-tao Wang ◽  
...  

Background: Increasing evidence indicates that long noncoding RNAs (IncRNAs) perform specific biological functions in diverse processes. Recent studies have reported that IncRNAs may be involved in β cell function. The aim of this study was to characterize the role of IncRNA TUG1 in mouse pancreatic β cell functioning both in vitro and in vivo. Methods: qRT-PCR analyses were performed to detect the expression of lncRNA TUG1 in different tissues. RNAi, MTT, TUNEL and Annexin V-FITC assays and western blot, GSIS, ELISA and immunochemistry analyses were performed to detect the effect of lncRNA TUG1 on cell apoptosis and insulin secretion in vitro and in vivo. Results: lncRNA TUG1 was highly expressed in pancreatic tissue compared with other organ tissues, and expression was dynamically regulated by glucose in Nit-1 cells. Knockdown of lncRNA TUG1 expression resulted in an increased apoptosis ratio and decreased insulin secretion in β cells both in vitro and in vivo . Immunochemistry analyses suggested decreased relative islet area after treatment with lncRNA TUG1 siRNA. Conclusion: Downregulation of lncRNA TUG1 expression affected apoptosis and insulin secretion in pancreatic β cells in vitro and in vivo. lncRNA TUG1 may represent a factor that regulates the function of pancreatic β cells.


2007 ◽  
Vol 193 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Shin Tsunekawa ◽  
Naoki Yamamoto ◽  
Katsura Tsukamoto ◽  
Yuji Itoh ◽  
Yukiko Kaneko ◽  
...  

The aim of this study was to investigate the in vivo and in vitro effects of exendin-4, a potent glucagon-like peptide 1 agonist, on the protection of the pancreatic β-cells against their cell death. In in vivo experiments, we used β-cell-specific calmodulin-overexpressing mice where massive apoptosis takes place in their β-cells, and we examined the effects of chronic treatment with exendin-4. Chronic and s.c. administration of exendin-4 reduced hyperglycemia. The treatment caused significant increases of the insulin contents of the pancreas and islets, and retained the insulin-positive area. Dispersed transgenic islet cells lived only shortly, and several endoplasmic reticulum (ER) stress-related molecules such as immunoglobulin-binding protein (Bip), inositol-requiring enzyme-1α, X-box-binding protein-1 (XBP-1), RNA-activated protein kinase-like endoplasmic reticulum kinase, activating transcription factor-4, and C/EBP-homologous protein (CHOP) were more expressed in the transgenic islets. We also found that the spliced form of XBP-1, a marker of ER stress, was also increased in β-cell-specific calmodulin-overexpressing transgenic islets. In the quantitative real-time PCR analyses, the expression levels of Bip and CHOP were reduced in the islets from the transgenic mice treated with exendin-4. These findings suggest that excess of ER stress occurs in the transgenic β-cells, and the suppression of ER stress and resultant protection against cell death may be involved in the anti-diabetic effects of exendin-4.


2013 ◽  
Vol 304 (12) ◽  
pp. E1263-E1272 ◽  
Author(s):  
Weijuan Shao ◽  
Zhaoxia Wang ◽  
Wilfred Ip ◽  
Yu-Ting Chiang ◽  
Xiaoquan Xiong ◽  
...  

Recent studies have demonstrated that the COOH-terminal fragment of the incretin hormone glucagon-like peptide-1 (GLP-1), a nonapeptide GLP-1(28–36)amide, attenuates diabetes and hepatic steatosis in diet-induced obese mice. However, the effect of this nonapeptide in pancreatic β-cells remains largely unknown. Here, we show that in a streptozotocin-induced mouse diabetes model, GLP-1(28–36)amide improved glucose disposal and increased pancreatic β-cell mass and β-cell proliferation. An in vitro investigation revealed that GLP-1(28–36)amide stimulates β-catenin (β-cat) Ser675 phosphorylation in both the clonal INS-1 cell line and rat primary pancreatic islet cells. In INS-1 cells, the stimulation was accompanied by increased nuclear β-cat content. GLP-1(28–36)amide was also shown to increase cellular cAMP levels, PKA enzymatic activity, and cAMP response element-binding protein (CREB) and cyclic AMP-dependent transcription factor-1 (ATF-1) phosphorylation. Furthermore, GLP-1(28–36)amide treatment enhanced islet insulin secretion and increased the growth of INS-1 cells, which was associated with increased cyclin D1 expression. Finally, PKA inhibition attenuated the effect of GLP-1(28–36)amide on β-cat Ser675 phosphorylation and cyclin D1 expression in the INS-1 cell line. We have thus revealed the beneficial effect of GLP-1(28–36)amide in pancreatic β-cells in vitro and in vivo. Our observations suggest that GLP-1(28–36)amide may exert its effect through the PKA/β-catenin signaling pathway.


2020 ◽  
Vol 319 (4) ◽  
pp. E805-E813
Author(s):  
Frank K. Huynh ◽  
Brett S. Peterson ◽  
Kristin A. Anderson ◽  
Zhihong Lin ◽  
Aeowynn J. Coakley ◽  
...  

Sirtuins are a family of proteins that regulate biological processes such as cellular stress and aging by removing posttranslational modifications (PTMs). We recently identified several novel PTMs that can be removed by sirtuin 4 (SIRT4), which is found in mitochondria. We showed that mice with a global loss of SIRT4 [SIRT4-knockout (KO) mice] developed an increase in glucose- and leucine-stimulated insulin secretion, and this was followed by accelerated age-induced glucose intolerance and insulin resistance. Because whole body SIRT4-KO mice had alterations to nutrient-stimulated insulin secretion, we hypothesized that SIRT4 plays a direct role in regulating pancreatic β-cell function. Thus, we tested whether β-cell-specific ablation of SIRT4 would recapitulate the elevated insulin secretion seen in mice with a global loss of SIRT4. Tamoxifen-inducible β-cell-specific SIRT4-KO mice were generated, and their glucose tolerance and glucose- and leucine-stimulated insulin secretion were measured over time. These mice exhibited normal glucose- and leucine-stimulated insulin secretion and maintained normal glucose tolerance even as they aged. Furthermore, 832/13 β-cells with a CRISPR/Cas9n-mediated loss of SIRT4 did not show any alterations in nutrient-stimulated insulin secretion. Despite the fact that whole body SIRT4-KO mice demonstrated an age-induced increase in glucose- and leucine-stimulated insulin secretion, our current data indicate that the loss of SIRT4 specifically in pancreatic β-cells, both in vivo and in vitro, does not have a significant impact on nutrient-stimulated insulin secretion. These data suggest that SIRT4 controls nutrient-stimulated insulin secretion during aging by acting on tissues external to the β-cell, which warrants further study.


2006 ◽  
Vol 291 (6) ◽  
pp. E1168-E1176 ◽  
Author(s):  
Günter Päth ◽  
Anne Opel ◽  
Martin Gehlen ◽  
Veit Rothhammer ◽  
Xinjie Niu ◽  
...  

p8 protein expression is known to be upregulated in the exocrine pancreas during acute pancreatitis. Own previous work revealed glucose-dependent p8 expression also in endocrine pancreatic β-cells. Here we demonstrate that glucose-induced INS-1 β-cell expansion is preceded by p8 protein expression. Moreover, isopropylthiogalactoside (IPTG)-induced p8 overexpression in INS-1 β-cells (p8-INS-1) enhances cell proliferation and expansion in the presence of glucose only. Although β-cell-related gene expression (PDX-1, proinsulin I, GLUT2, glucokinase, amylin) and function (insulin content and secretion) are slightly reduced during p8 overexpression, removal of IPTG reverses β-cell function within 24 h to normal levels. In addition, insulin secretion of p8-INS-1 β-cells in response to 0–25 mM glucose is not altered by preceding p8-induced β-cell expansion. Adenovirally transduced p8 overexpression in primary human pancreatic islets increases proliferation, expansion, and cumulative insulin secretion in vitro. Transplantation of mock-transduced control islets under the kidney capsule of immunosuppressed streptozotocin-diabetic mice reduces blood glucose and increases human C-peptide serum concentrations to stable levels after 3 days. In contrast, transplantation of equal numbers of p8-transduced islets results in a continuous decrease of blood glucose and increase of human C-peptide beyond 3 days, indicating p8-induced expansion of transplanted human β-cells in vivo. This is underlined by a doubling of insulin content in kidneys containing p8-transduced islet grafts explanted on day 9. These results establish p8 as a novel molecular mediator of glucose-induced pancreatic β-cell expansion in vitro and in vivo and support the notion of existing β-cell replication in the adult organism.


2019 ◽  
Author(s):  
Sarah A. White ◽  
Lisa Zhang ◽  
Yu Hsuan Carol Yang ◽  
Dan S. Luciani

ABSTRACTER stress and apoptosis contribute to the loss of pancreatic β-cells under the pro-diabetic conditions of glucolipotoxicity. Although activation of the canonical pathway of intrinsic apoptosis is known to require Bax and Bak, their individual and combined involvement in glucolipotoxic β-cell death have not been demonstrated. It has also remained an open question if Bax and Bak in β-cells have non-apoptotic roles in mitochondrial function and ER stress signaling, as suggested in other cell types. Using mice with individual or combined β-cell deletion of Bax and Bak, we demonstrated that glucolipotoxic β-cell death in vitro happens in sequential stages; first via non-apoptotic mechanisms and later by apoptosis, which Bax and Bak were redundant in triggering. In contrast, they had non-redundant roles in mediating staurosporine-induced β-cell apoptosis. We further established that Bax and Bak do not affect normal glucose-stimulated β-cell Ca2+ responses, insulin secretion, or in vivo glucose tolerance. Finally, our experiments revealed that Bax and Bak together dampen the unfolded protein response in β-cells during the early stages of chemical- or glucolipotoxicity-induced ER stress. These findings identify novel roles of the canonical apoptosis machinery in modulating stress signals that are important for the pathobiology of β-cells in diabetes.


2020 ◽  
Vol 27 ◽  
Author(s):  
Ioanna A. Anastasiou ◽  
Ioanna Eleftheriadou ◽  
Anastasios Tentolouris ◽  
Chrysi Koliaki ◽  
Ourania A. Kosta ◽  
...  

Background: Oxidative stress is a hallmark of many diseases. A growing body of evidence suggests that hyperglycemiainduced oxidative stress plays an important role in pancreatic β-cells dysfunction and apoptosis as well as in the development and progression of diabetic complications. Considering the vulnerability of pancreatic β-cells to oxidative damage, induction of endogenous antioxidant enzymes or exogenous antioxidant administration has been proposed to protect pancreatic β-cells from damage. Objectives: The present review aims to provide evidence of the effect of oxidative stress and antioxidant therapies on pancreatic β-cell function, based on in vitro and in vivo studies. Methods: The medline and embase databases were searched to retrieve available data. Results: Due to poor endogenous antioxidant mechanisms pancreatic β-cells are extremely sensitive to reactive oxygen species (ROS). Many natural extracts have been tested in vitro in pancreatic β-cell lines in terms of their antioxidant and diabetes mellitus ameliorating effects, and the majority of them have shown a dose-dependent protective role. On the other hand, there is relatively limited evidence regarding the in vitro antioxidant effects of antidiabetic drugs on pancreatic β-cells. About in vivo studies several natural extracts have shown beneficial effects in the setting of diabetes by decreasing blood glucose and lipid levels, increasing insulin sensitivity, and by up-regulating intrinsic antioxidant enzyme activity. However, there is limited evidence obtained from in vivo studies regarding antidiabetic drugs. Conclusion: Antioxidants hold promise for developing strategies aimed at the prevention or treatment of diabetes mellitus associated with pancreatic β-cells dysfunction, as supported by in vitro and in vivo studies. However, more in vitro studies are required about drugs.


2006 ◽  
Vol 26 (12) ◽  
pp. 4511-4518 ◽  
Author(s):  
Kinh-Tung T. Nguyen ◽  
Panteha Tajmir ◽  
Chia Hung Lin ◽  
Nicole Liadis ◽  
Xu-Dong Zhu ◽  
...  

ABSTRACT PTEN (phosphatase with tensin homology) is a potent negative regulator of phosphoinositide 3-kinase (PI3K)/Akt signaling, an evolutionarily conserved pathway that signals downstream of growth factors, including insulin and insulin-like growth factor 1. In lower organisms, this pathway participates in fuel metabolism and body size regulation and insulin-like proteins are produced primarily by neuronal structures, whereas in mammals, the major source of insulin is the pancreatic β cells. Recently, rodent insulin transcription was also shown in the brain, particularly the hypothalamus. The specific regulatory elements of the PI3K pathway in these insulin-expressing tissues that contribute to growth and metabolism in higher organisms are unknown. Here, we report PTEN as a critical determinant of body size and glucose metabolism when targeting is driven by the rat insulin promoter in mice. The partial deletion of PTEN in the hypothalamus resulted in significant whole-body growth restriction and increased insulin sensitivity. Efficient PTEN deletion in β cells led to increased islet mass without compromise of β-cell function. Parallel enhancement in PI3K signaling was found in PTEN-deficient hypothalamus and β cells. Together, we have shown that PTEN in insulin-transcribing cells may play an integrative role in regulating growth and metabolism in vivo.


Sign in / Sign up

Export Citation Format

Share Document