scholarly journals Decision-related perturbations of decision-irrelevant eye movements

2016 ◽  
Vol 113 (7) ◽  
pp. 1925-1930 ◽  
Author(s):  
Sung Jun Joo ◽  
Leor N. Katz ◽  
Alexander C. Huk

It is well established that ongoing cognitive functions affect the trajectories of limb movements mediated by corticospinal circuits, suggesting an interaction between cognition and motor action. Although there are also many demonstrations that decision formation is reflected in the ongoing neural activity in oculomotor brain circuits, it is not known whether the decision-related activity in those oculomotor structures interacts with eye movements that are decision irrelevant. Here we tested for an interaction between decisions and instructed saccades unrelated to the perceptual decision. Observers performed a direction-discrimination decision-making task, but made decision-irrelevant saccades before registering their motion decision with a button press. Probing the oculomotor circuits with these decision-irrelevant saccades during decision making revealed that saccade reaction times and peak velocities were influenced in proportion to motion strength, and depended on the directional congruence between decisions about visual motion and decision-irrelevant saccades. These interactions disappeared when observers passively viewed the motion stimulus but still made the same instructed saccades, and when manual reaction times were measured instead of saccade reaction times, confirming that these interactions result from decision formation as opposed to visual stimulation, and are specific to the oculomotor system. Our results demonstrate that oculomotor function can be affected by decision formation, even when decisions are communicated without eye movements, and that this interaction has a directionally specific component. These results not only imply a continuous and interactive mixture of motor and decision signals in oculomotor structures, but also suggest nonmotor recruitment of oculomotor machinery in decision making.

2019 ◽  
Author(s):  
Deborah A. Barany ◽  
Ana Gómez-Granados ◽  
Margaret Schrayer ◽  
Sarah A. Cutts ◽  
Tarkeshwar Singh

AbstractVisual processing in parietal areas of the dorsal stream facilitates sensorimotor transformations for rapid movement. This action-related visual processing is hypothesized to play a distinct functional role from the perception-related processing in the ventral stream. However, it is unclear how the two streams interact when perceptual identification is a prerequisite to executing an accurate movement. In the current study, we investigated how perceptual decision-making involving the ventral stream influences arm and eye movement strategies. Participants (N = 26) moved a robotic manipulandum using right whole-arm movements to rapidly reach a stationary object or intercept a moving object on an augmented-reality display. On some blocks of trials, participants needed to identify the shape of the object (circle or ellipse) as a cue to either hit the object (circle) or move to a pre-defined location away from the object (ellipse). We found that during perceptual decision-making, there was an increased urgency to act during interception movements relative to reaching, which was associated with more decision errors. Faster hand reaction times were correlated with a strategy to adjust the movement post-initiation, and this strategy was more prominent during interception. Saccadic reaction times were faster and initial gaze lags and gains greater during decisions, suggesting that eye movements adapt to perceptual demands for guiding limb movements. Together, our findings suggest that the integration of ventral stream information with visuomotor planning depends on imposed (or perceived) task demands.New and NoteworthyVisual processing for perception and for action are thought to be mediated by two specialized neural pathways. Using a visuomotor decision-making task, we show that participants differentially utilized online perceptual decision-making in reaching and interception, and that eye movements necessary for perception influenced motor decision strategies. These results provide evidence that task complexity modulates how pathways processing perception versus action information interact during the visual control of movement.


2019 ◽  
Author(s):  
Carly A Shevinsky ◽  
Pamela Reinagel

AbstractA stochastic visual motion discrimination task is widely used to study rapid decision-making in humans and animals. Among trials of the same sensory difficulty within a block of fixed decision strategy, humans and monkeys are widely reported to make more errors in the individual trials with longer reaction times. This finding has posed a challenge for the drift-diffusion model of sensory decision-making, which in its basic form predicts that errors and correct responses should have the same reaction time distributions. We previously reported that rats also violate this model prediction, but in the opposite direction: for rats, motion discrimination accuracy was highest in the trials with the longest reaction times. To rule out task differences as the cause of our divergent finding in rats, the present study tested humans and rats using the same task and analyzed their data identically. We confirmed that rats’ accuracy increased with reaction time, whereas humans’ accuracy decreased with reaction time in the same task. These results were further verified using a new temporally-local analysis method, ruling out that the observed trend was an artifact of non-stationarity in the data of either species. The main effect was found whether the signal strength (motion coherence) was varied in randomly interleaved trials or held constant within a block. The magnitude of the effects increased with motion coherence. These results provide new constraints useful for refining and discriminating among the many alternative mathematical theories of decision-making.


2017 ◽  
Vol 117 (5) ◽  
pp. 1894-1910 ◽  
Author(s):  
Antimo Buonocore ◽  
Chih-Yang Chen ◽  
Xiaoguang Tian ◽  
Saad Idrees ◽  
Thomas A. Münch ◽  
...  

Microsaccades occur during gaze fixation to correct for miniscule foveal motor errors. The mechanisms governing such fine oculomotor control are still not fully understood. In this study, we explored microsaccade control by analyzing the impacts of transient visual stimuli on these movements’ kinematics. We found that such kinematics can be altered in systematic ways depending on the timing and spatial geometry of visual transients relative to the movement goals. In two male rhesus macaques, we presented peripheral or foveal visual transients during an otherwise stable period of fixation. Such transients resulted in well-known reductions in microsaccade frequency, and our goal was to investigate whether microsaccade kinematics would additionally be altered. We found that both microsaccade timing and amplitude were modulated by the visual transients, and in predictable manners by these transients’ timing and geometry. Interestingly, modulations in the peak velocity of the same movements were not proportional to the observed amplitude modulations, suggesting a violation of the well-known “main sequence” relationship between microsaccade amplitude and peak velocity. We hypothesize that visual stimulation during movement preparation affects not only the saccadic “Go” system driving eye movements but also a “Pause” system inhibiting them. If the Pause system happens to be already turned off despite the new visual input, movement kinematics can be altered by the readout of additional visually evoked spikes in the Go system coding for the flash location. Our results demonstrate precise control over individual microscopic saccades and provide testable hypotheses for mechanisms of saccade control in general. NEW & NOTEWORTHY Microsaccadic eye movements play an important role in several aspects of visual perception and cognition. However, the mechanisms for microsaccade control are still not fully understood. We found that microsaccade kinematics can be altered in a systematic manner by visual transients, revealing a previously unappreciated and exquisite level of control by the oculomotor system of even the smallest saccades. Our results suggest precise temporal interaction between visual, motor, and inhibitory signals in microsaccade control.


Neuron ◽  
2009 ◽  
Vol 62 (5) ◽  
pp. 717-732 ◽  
Author(s):  
Natsuko Shichinohe ◽  
Teppei Akao ◽  
Sergei Kurkin ◽  
Junko Fukushima ◽  
Chris R.S. Kaneko ◽  
...  

2005 ◽  
Vol 100 (1) ◽  
pp. 267-274 ◽  
Author(s):  
Marian Berryhill ◽  
Kestutis Kveraga ◽  
Howard C. Hughes

Reaction times generally follow the predictions of Hick's law as stimulus-response uncertainty increases, although notable exceptions include the oculomotor system. Saccadic and smooth pursuit eye movement reaction times are independent of stimulus-response uncertainty. Previous research showed that joystick pointing to targets, a motor analog of saccadic eye movements, is only modestly affected by increased stimulus-response uncertainty; however, a no-uncertainty condition (simple reaction time to 1 possible target) was not included. Here, we re-evaluate manual joystick pointing including a no-uncertainty condition. Analysis indicated simple joystick pointing reaction times were significantly faster than choice reaction times. Choice reaction times (2, 4, or 8 possible target locations) only slightly increased as the number of possible targets increased. These data suggest that, as with joystick tracking (a motor analog of smooth pursuit eye movements), joystick pointing is more closely approximated by a simple/choice step function than the log function predicted by Hick's law.


2018 ◽  
Author(s):  
Rachel Millin ◽  
Tamar Kolodny ◽  
Anastasia V. Flevaris ◽  
Alex M. Kale ◽  
Michael-Paul Schallmo ◽  
...  

AbstractThere has been long-standing speculation that autism spectrum disorder (ASD) involves an increase in excitation relative to inhibition. However, there is little direct evidence of increased neural excitation in humans with ASD. Here we provide a potential explanation for this discrepancy: we show that increased neural excitation emerges only after repeated stimulation, manifesting as a deficit in neural adaptation. We measured fMRI responses induced by repeated audio-visual stimulation and button presses in early sensory-motor cortical areas. Across all cortical areas we show reduced adaptation in individuals with ASD compared to neurotypical individuals. The degree of adaptation is correlated between cortical areas and with button-press reaction times across subjects. These findings suggest that increased neural excitation in ASD, manifesting as dysregulated neural adaptation, is domain-general and behaviorally-relevant.


2012 ◽  
Vol 17 (4) ◽  
pp. 257-265 ◽  
Author(s):  
Carmen Munk ◽  
Günter Daniel Rey ◽  
Anna Katharina Diergarten ◽  
Gerhild Nieding ◽  
Wolfgang Schneider ◽  
...  

An eye tracker experiment investigated 4-, 6-, and 8-year old children’s cognitive processing of film cuts. Nine short film sequences with or without editing errors were presented to 79 children. Eye movements up to 400 ms after the targeted film cuts were measured and analyzed using a new calculation formula based on Manhattan Metrics. No age effects were found for jump cuts (i.e., small movement discontinuities in a film). However, disturbances resulting from reversed-angle shots (i.e., a switch of the left-right position of actors in successive shots) led to increased reaction times between 6- and 8-year old children, whereas children of all age groups had difficulties coping with narrative discontinuity (i.e., the canonical chronological sequence of film actions is disrupted). Furthermore, 4-year old children showed a greater number of overall eye movements than 6- and 8-year old children. This indicates that some viewing skills are developed between 4 and 6 years of age. The results of the study provide evidence of a crucial time span of knowledge acquisition for television-based media literacy between 4 and 8 years.


2020 ◽  
Author(s):  
Luca Rade

Emulators are internal models, first evolved for prediction in perception to shorten the feedback on motor action. However, the selective pressure on perception is to improve the fitness of decision-making, driving the evolution of emulators towards context-dependent payoff representation and integration of action planning, not enhanced prediction as is generally assumed. The result is integrated perceptual, memory, representational, and imaginative capacities processing external input and stored internal input for decision-making, while simultaneously updating stored information. Perception, recall, imagination, theory of mind, and dreaming are the same process with different inputs. Learning proceeds via scaffolding on existing conceptual infrastructure, a weak form of embodied cognition. Discrete concepts are emergent from continuous dynamics and are in a perceptual, not representational, format. Language is also in perceptual format and enables precise abstract thought. In sum, what was initially a primitive system for short-term prediction in perception has evolved to perform abstract thought, store and retrieve memory, understand others, hold embedded action plans, build stable narratives, simulate scenarios, and integrate context dependence into perception. Crucially, emulators co-evolved with the emergence of societies, producing a mind-society system in which emulators are dysfunctional unless integrated into a society, which enables their complexity. The Target Emulator System, evolved initially for honest signaling, produces the emergent dynamics of the mind-society system and spreads variation-testing of behavior and thought patterns across a population. The human brain is the most dysfunctional in isolation, but the most effective given its context.


Author(s):  
Wojciech J. Cynarski ◽  
Jan Słopecki ◽  
Bartosz Dziadek ◽  
Peter Böschen ◽  
Paweł Piepiora

(1) Study aim: This is a comparative study for judo and jujutsu practitioners. It has an intrinsic value. The aim of this study was to showcase a comparison of practitioners of judo and a similar martial art jujutsu with regard to manual abilities. The study applied the measurement of simple reaction time in response to a visual stimulus and handgrip measurement. (2) Materials and Methods: The group comprising N = 69 black belts from Poland and Germany (including 30 from judo and 39 from jujutsu) applied two trials: “grasping of Ditrich rod” and dynamometric handgrip measurement. The analysis of the results involved the calculations of arithmetic means, standard deviations, and Pearson correlations. Analysis of the differences (Mann–Whitney U test) and Student’s t-test were also applied to establish statistical differences. (3) Results: In the test involving handgrip measurement, the subjects from Poland (both those practicing judo and jujutsu) gained better results compared to their German counterparts. In the test involving grasping of Ditrich rod, a positive correlation was demonstrated in the group of German judokas between the age and reaction time of the subjects (rxy = 0.66, p < 0.05), as well as in the group of jujutsu subjects between body weight and the reaction time (rxy = 0.49, p < 0.05). A significant and strong correlation between handgrip and weight was also established for the group of German judokas (rxy = 0.75, p < 0.05). In Polish competitors, the correlations were only established between the age and handgrip measurements (rxy = 0.49, p < 0.05). (4) Conclusions: Simple reaction times in response to visual stimulation were shorter in the subjects practicing the martial art jujutsu. However, the statement regarding the advantage of the judokas in terms of handgrip force was not confirmed by the results.


2019 ◽  
Vol 5 (1) ◽  
pp. 247-268 ◽  
Author(s):  
Peter Thier ◽  
Akshay Markanday

The cerebellar cortex is a crystal-like structure consisting of an almost endless repetition of a canonical microcircuit that applies the same computational principle to different inputs. The output of this transformation is broadcasted to extracerebellar structures by way of the deep cerebellar nuclei. Visually guided eye movements are accommodated by different parts of the cerebellum. This review primarily discusses the role of the oculomotor part of the vermal cerebellum [the oculomotor vermis (OMV)] in the control of visually guided saccades and smooth-pursuit eye movements. Both types of eye movements require the mapping of retinal information onto motor vectors, a transformation that is optimized by the OMV, considering information on past performance. Unlike the role of the OMV in the guidance of eye movements, the contribution of the adjoining vermal cortex to visual motion perception is nonmotor and involves a cerebellar influence on information processing in the cerebral cortex.


Sign in / Sign up

Export Citation Format

Share Document