Extended Emulation Theory
Emulators are internal models, first evolved for prediction in perception to shorten the feedback on motor action. However, the selective pressure on perception is to improve the fitness of decision-making, driving the evolution of emulators towards context-dependent payoff representation and integration of action planning, not enhanced prediction as is generally assumed. The result is integrated perceptual, memory, representational, and imaginative capacities processing external input and stored internal input for decision-making, while simultaneously updating stored information. Perception, recall, imagination, theory of mind, and dreaming are the same process with different inputs. Learning proceeds via scaffolding on existing conceptual infrastructure, a weak form of embodied cognition. Discrete concepts are emergent from continuous dynamics and are in a perceptual, not representational, format. Language is also in perceptual format and enables precise abstract thought. In sum, what was initially a primitive system for short-term prediction in perception has evolved to perform abstract thought, store and retrieve memory, understand others, hold embedded action plans, build stable narratives, simulate scenarios, and integrate context dependence into perception. Crucially, emulators co-evolved with the emergence of societies, producing a mind-society system in which emulators are dysfunctional unless integrated into a society, which enables their complexity. The Target Emulator System, evolved initially for honest signaling, produces the emergent dynamics of the mind-society system and spreads variation-testing of behavior and thought patterns across a population. The human brain is the most dysfunctional in isolation, but the most effective given its context.