scholarly journals RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses

2016 ◽  
Vol 113 (41) ◽  
pp. 11615-11620 ◽  
Author(s):  
M. Katharina Grauel ◽  
Marta Maglione ◽  
Suneel Reddy-Alla ◽  
Claudia G. Willmes ◽  
Marisa M. Brockmann ◽  
...  

The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (CaVs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2–deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in CaV2.1 clustering at AZs, which likely alters Ca2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses.

2011 ◽  
Vol 106 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Erika D. Nelson ◽  
Manjot Bal ◽  
Ege T. Kavalali ◽  
Lisa M. Monteggia

An imbalance between the strengths of excitatory and inhibitory synaptic inputs has been proposed as the cellular basis of autism and related neurodevelopmental disorders. Previous studies examining spontaneous levels of excitatory and inhibitory neurotransmission in the forebrain regions of methyl-CpG-binding protein 2 ( Mecp2) mutant mice, models of the autism spectrum disorder Rett syndrome, have identified a decrease in excitatory drive, in some cases coupled with an increase in inhibitory synaptic strength, as a major source of this imbalance. Here, we reevaluated this question by examining the short-term dynamics of evoked neurotransmission between hippocampal neurons cultured from MeCP2 knockout mice and found a marked increase in evoked excitatory neurotransmission that is consistent with an increase in presynaptic release probability. This increase in evoked excitatory drive was not matched with alterations in evoked inhibitory neurotransmission. Moreover, we observed similar excitatory drive specific changes after the loss of key histone deacetylases (histone deacetylase 1 and 2) that form a complex with MeCP2 and mediate transcriptional regulation. These findings suggest a distinct role for MeCP2 and its cofactors in the regulation of evoked excitatory neurotransmission compared with their essential role in basal synaptic activity.


2019 ◽  
Author(s):  
Gaurang Mahajan ◽  
Suhita Nadkarni

AbstractSynapses across different brain regions display distinct structure-function relationships. We investigate the interplay of fundamental design principles that shape the transmission properties of the excitatory CA3-CA1 pyramidal cell connection, a prototypic synapse for studying the mechanisms of learning in the hippocampus. This small synapse is characterized by probabilistic release of transmitter, which is markedly facilitated in response to naturally occurring trains of action potentials. Based on a physiologically realistic computational model of the CA3 presynaptic terminal, we show how unreliability and short-term dynamics of vesicle release work together to regulate the trade-off of information transfer versus energy use. We propose that individual CA3-CA1 synapses are designed to operate at close to maximum possible capacity of information transfer in an efficient manner. Experimental measurements reveal a wide range of vesicle release probabilities at hippocampal synapses, which may be a necessary consequence of long-term plasticity and homeostatic mechanisms that manifest as presynaptic modifications of release probability. We show that the timescales and magnitude of short-term plasticity render synaptic information transfer nearly independent of differences in release probability. Thus, individual synapses transmit optimally while maintaining a heterogeneous distribution of presynaptic strengths indicative of synaptically-encoded memory representations. Our results support the view that organizing principles that are evident on higher scales of neural organization percolate down to the design of an individual synapse.


2016 ◽  
Vol 113 (4) ◽  
pp. 1062-1067 ◽  
Author(s):  
Evanthia Nanou ◽  
Jane M. Sullivan ◽  
Todd Scheuer ◽  
William A. Catterall

Short-term synaptic plasticity is induced by calcium (Ca2+) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca2+ channels by Ca2+ sensor proteins induces facilitation of Ca2+ currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca2+ sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼50%. In the presence of EGTA-AM to prevent global increases in free Ca2+, the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca2+ is dependent upon regulation of CaV2.1 channels by Ca2+ sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10–20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dwaipayan Adhya ◽  
George Chennell ◽  
James A. Crowe ◽  
Eva P. Valencia-Alarcón ◽  
James Seyforth ◽  
...  

Abstract Background The inability to observe relevant biological processes in vivo significantly restricts human neurodevelopmental research. Advances in appropriate in vitro model systems, including patient-specific human brain organoids and human cortical spheroids (hCSs), offer a pragmatic solution to this issue. In particular, hCSs are an accessible method for generating homogenous organoids of dorsal telencephalic fate, which recapitulate key aspects of human corticogenesis, including the formation of neural rosettes—in vitro correlates of the neural tube. These neurogenic niches give rise to neural progenitors that subsequently differentiate into neurons. Studies differentiating induced pluripotent stem cells (hiPSCs) in 2D have linked atypical formation of neural rosettes with neurodevelopmental disorders such as autism spectrum conditions. Thus far, however, conventional methods of tissue preparation in this field limit the ability to image these structures in three-dimensions within intact hCS or other 3D preparations. To overcome this limitation, we have sought to optimise a methodological approach to process hCSs to maximise the utility of a novel Airy-beam light sheet microscope (ALSM) to acquire high resolution volumetric images of internal structures within hCS representative of early developmental time points. Results Conventional approaches to imaging hCS by confocal microscopy were limited in their ability to image effectively into intact spheroids. Conversely, volumetric acquisition by ALSM offered superior imaging through intact, non-clarified, in vitro tissues, in both speed and resolution when compared to conventional confocal imaging systems. Furthermore, optimised immunohistochemistry and optical clearing of hCSs afforded improved imaging at depth. This permitted visualization of the morphology of the inner lumen of neural rosettes. Conclusion We present an optimized methodology that takes advantage of an ALSM system that can rapidly image intact 3D brain organoids at high resolution while retaining a large field of view. This imaging modality can be applied to both non-cleared and cleared in vitro human brain spheroids derived from hiPSCs for precise examination of their internal 3D structures. This process represents a rapid, highly efficient method to examine and quantify in 3D the formation of key structures required for the coordination of neurodevelopmental processes in both health and disease states. We posit that this approach would facilitate investigation of human neurodevelopmental processes in vitro.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 411
Author(s):  
Yunkai Zhang ◽  
Yinghong Tian ◽  
Pingyi Wu ◽  
Dongfan Chen

The recognition of stereotyped action is one of the core diagnostic criteria of Autism Spectrum Disorder (ASD). However, it mainly relies on parent interviews and clinical observations, which lead to a long diagnosis cycle and prevents the ASD children from timely treatment. To speed up the recognition process of stereotyped actions, a method based on skeleton data and Long Short-Term Memory (LSTM) is proposed in this paper. In the first stage of our method, the OpenPose algorithm is used to obtain the initial skeleton data from the video of ASD children. Furthermore, four denoising methods are proposed to eliminate the noise of the initial skeleton data. In the second stage, we track multiple ASD children in the same scene by matching distance between current skeletons and previous skeletons. In the last stage, the neural network based on LSTM is proposed to classify the ASD children’s actions. The performed experiments show that our proposed method is effective for ASD children’s action recognition. Compared to the previous traditional schemes, our scheme has higher accuracy and is almost non-invasive for ASD children.


Sign in / Sign up

Export Citation Format

Share Document